1,192
Views
2
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications

ORCID Icon, ORCID Icon & ORCID Icon
Pages 895-910 | Received 19 Aug 2022, Accepted 13 Nov 2022, Published online: 19 Dec 2022

References

  • Chernozem RV, Surmeneva MA, Shkarina SN, et al. Piezoelectric 3-D fibrous poly(3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering: inorganic phase formation, osteoblast cell adhesion, and proliferation. ACS Appl Mater Interfaces. 2019;11(21):19522–19533. DOI:10.1021/acsami.9b04936
  • Gans I, Retzky JS, Jones LC, et al. Epidemiology of recurrent anterior cruciate ligament injuries in national collegiate athletic association sports: the injury surveillance program, 2004-2014. Orthop J Sports Med. 2018;6(6):2325967118777823. DOI:10.1177/2325967118777823
  • Pietrosimone B, Seeley MK, Johnston C, et al. Walking ground reaction force post-ACL Reconstruction: analysis of time and symptoms. Med Sci Sports Exerc. 2019;51(2):246–254. DOI:10.1249/MSS.0000000000001776
  • Yang J, Dong Y, Wang J, et al. Hydroxypropyl cellulose coating to improve graft-to-bone healing for anterior cruciate ligament reconstruction. ACS Biomater Sci Eng. 2019;5(4):1793–1803. DOI:10.1021/acsbiomaterials.8b01145
  • Szczesny SE, Driscoll TP, Tseng H-Y, et al. Crimped nanofibrous biomaterials mimic microstructure and mechanics of native tissue and alter strain transfer to cells. ACS Biomater Sci Eng. 2017;3(11):2869–2876. DOI:10.1021/acsbiomaterials.6b00646
  • Vunjak-Novakovic G, Altman G, Horan R, et al. Tissue engineering of ligaments. Annu Rev Biomed Eng. 2004;6(1):131–156. DOI:10.1146/annurev.bioeng.6.040803.140037
  • Chen F, Hayami JW, Amsden BG. Electrospun poly(l-lactide-co-acryloyl carbonate) fiber scaffolds with a mechanically stable crimp structure for ligament tissue engineering. Biomacromolecules. 2014;15(5):1593–1601.
  • Woo SLY, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–225. DOI:10.1177/036354659101900303
  • Marieswaran M, Jain I, Garg B, et al. A review on biomechanics of anterior cruciate ligament and materials for reconstruction. Appl Bionics Biomech. 2018;2018:4657824.
  • Silva M, Ferreira FN, Alves NM, et al. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnology. 2020;18(1):23. DOI:10.1186/s12951-019-0556-1
  • Fare S, Torricelli P, Giavaresi G, et al. In vitro study on silk fibroin textile structure for anterior cruciate ligament regeneration. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3601–3608. DOI:10.1016/j.msec.2013.04.027
  • Yamada H, Nakao H, Takasu Y, et al. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater Sci Eng C. 2001;14(1):41–46. DOI:10.1016/S0928-4931(01)00207-7
  • Teh TKH, Goh JCH. 6.12 tissue engineering approaches to regeneration of anterior cruciate ligament☆. In: Ducheyne P, editor. comprehensive biomaterials II. Elsevier: Oxford; 2017. pp. 194–215.
  • Cooper JA, Lu HH, Ko FK, et al. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26(13):1523–1532. DOI:10.1016/j.biomaterials.2004.05.014
  • Surrao DC, Waldman SD, Amsden BG. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomater. 2012;8(11):3997–4006.
  • Sen KY, Hussin MH, Baidurah S. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator from various pretreated molasses as carbon source. Biocatal Agric Biotechnol. 2019;17:51–59.
  • Das M, Grover A. Fermentation optimization and mathematical modeling of glycerol-based microbial poly(3-hydroxybutyrate) production. Process Biochem. 2018;71:1–11.
  • Wongsirichot P, Gonzalez-Miquel M, Winterburn J. Integrated biorefining approach for the production of polyhydroxyalkanoates from enzymatically hydrolyzed rapeseed meal under nitrogen-limited conditions. ACS Sustain Chem Eng. 2020;8(22):8362–8372.
  • Kucera D, Pernicová I, Kovalcik A, et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol. 2018;256:552–556.
  • Ferre-Guell A, Winterburn J. Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromolecules. 2018;19(3):996–1005.
  • Ferre-Guell A, Winterburn J. Increased production of polyhydroxyalkanoates with controllable composition and consistent material properties by fed-batch fermentation. Biochem Eng J. 2019;141:35–42.
  • Cheng M, Qin Z, Hu S, et al. Achieving long-term sustained drug delivery for electrospun biopolyester nanofibrous membranes by introducing cellulose nanocrystals. ACS Biomater Sci Eng. 2017;3(8):1666–1676. DOI:10.1021/acsbiomaterials.7b00169
  • Diez-Pascual AM, Diez-Vicente AL. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces. 2014;6(12):9822–9834.
  • Rivera-Briso AL, Aachmann FL, Moreno-Manzano V, et al. Graphene oxide nanosheets versus carbon nanofibers: enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int J Biol Macromol. 2020;143:1000–1008.
  • Yu DG, Lin W-C, Lin C-H, et al. Cytocompatibility and antibacterial activity of a PHBV membrane with surface-immobilized water-soluble chitosan and chondroitin-6-sulfate. Macromol Biosci. 2006;6(5):348–357. DOI:10.1002/mabi.200600026
  • Dalgic AD, Atila D, Karatas A, et al. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;100:735–746.
  • Suwantong O, Waleetorncheepsawat S, Sanchavanakit N, et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. Int J Biol Macromol. 2007;40(3):217–223. DOI:10.1016/j.ijbiomac.2006.07.006
  • Chen W-C, Chen C-H, Tseng H-W, et al. Surface functionalized electrospun fibrous poly(3-hydroxybutyrate) membranes and sleeves: a novel approach for fixation in anterior cruciate ligament reconstruction. J Mat Chem B. 2017;5(3):553–564. DOI:10.1039/C6TB02671K
  • Rathbone S, Furrer P, Lübben J, et al. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res Part A. 2010;93A(4):1391–1403. DOI:10.1002/jbm.a.32641
  • Tebaldi ML, Maia ALC, Poletto F, et al. Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): current advances in synthesis methodologies, antitumor applications and biocompatibility. J Drug Delivery Sci Technol. 2019;51:115–126.
  • Kaniuk Ł, Stachewicz U. Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomater Sci Eng. 2021;7(12):5339–5362.
  • Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3):216–223.
  • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32(36):9622–9629.
  • Santos ML, Rodrigues MT, Domingues R, et al. Biomaterials as tendon and ligament substitutes: current developments. In: Oliveira JM, Reis RL, editors. Regenerative strategies for the treatment of knee joint disabilities. Cham: Springer International Publishing; 2017. p. 349–371.
  • Han J, Wu L-P, Hou J, et al. Biosynthesis, characterization, and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by haloferax mediterranei. Biomacromolecules. 2015;16(2):578–588. DOI:10.1021/bm5016267
  • Zinn M, Weilenmann H-U, Hany R, et al. Tailored synthesis of poly([R]-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnol. 2003;2‐3(23):309–316. DOI:10.1002/abio.200390039
  • Papadopoulou EL, Basnett P, Paul UC, et al. Green composites of poly(3-hydroxybutyrate) containing graphene nanoplatelets with desirable electrical conductivity and oxygen barrier properties. ACS Omega. 2019;4(22):19746–19755. DOI:10.1021/acsomega.9b02528
  • Sato H, Ando Y, Mitomo H, et al. Infrared spectroscopy and X-ray diffraction studies of thermal behavior and lamella structures of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) with PHB-type crystal structure and PHV-type crystal structure. Macromolecules. 2011;44(8):2829–2837. DOI:10.1021/ma102723n
  • Kelly CA, Fitzgerald AVL, Jenkins MJ. Control of the secondary crystallisation process in poly(hydroxybutyrate-co-hydroxyvalerate) through the incorporation of poly(ethylene glycol). Polym Degrad Stab. 2018;148:67–74.
  • Ahmed T, Marçal H, Lawless M, et al. Polyhydroxybutyrate and its copolymer with polyhydroxyvalerate as biomaterials: influence on progression of stem cell cycle. Biomacromolecules. 2010;11(10):2707–2715. DOI:10.1021/bm1007579
  • Anbukarasu P, Sauvageau D, Elias A. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep. 2015;5(1):17884.
  • Shang L, Fei Q, Zhang YH, et al. Thermal properties and biodegradability studies of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Polym Environ. 2012;20(1):23–28. DOI:10.1007/s10924-011-0362-9
  • Wang Y, Yamada S, Asakawa N, et al. Comonomer compositional distribution and thermal and morphological characteristics of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s with high 3-hydroxyvalerate content. Biomacromolecules. 2001;2(4):1315–1323. DOI:10.1021/bm010128o
  • Ghasemi M, Alexandridis P, Tsianou M. Dissolution of cellulosic fibers: impact of crystallinity and fiber diameter. Biomacromolecules. 2018;19(2):640–651.
  • Yeum JH, Park JH, Kim IK, Woo IC. Electrospinning Fabrication and Characterization of Water Soluble Polymer/Montmorillonite/Silver Nanocomposite Nanofibers out of Aqueous Solution. In: Boreddy R, editor. Advances in nanocomposites. Rijeka: IntechOpen; 2011. Ch 20.
  • Kim DK, Lagerwall JPF. Influence of wetting on morphology and core content in electrospun core–sheath fibers. ACS Appl Mater Interfaces. 2014;6(18):16441–16447.
  • Beachley V, Katsanevakis E, Zhang N, et al. Highly aligned polymer nanofiber structures: fabrication and applications in tissue engineering. In: Jayakumar R, and Nair S, editors. Biomedical applications of polymeric nanofibers. Berlin, Heidelberg: Springer; 2012. pp. 171–212.
  • Bertocchi MJ, Simbana RA, Wynne JH, et al. Electrospinning of Tough and elastic liquid crystalline polymer–polyurethane composite fibers: mechanical properties and fiber alignment. Macromol Mater Eng. 2019;304(8):1900186. DOI:10.1002/mame.201900186
  • Cho D, Zhou H, Cho Y, et al. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer. 2010;51(25):6005–6012. DOI:10.1016/j.polymer.2010.10.028
  • Areias AC, Ribeiro C, Sencadas V, et al. Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(l-lactide) electrospun mats. Soft Matter. 2012;8(21):5818. DOI:10.1039/c2sm25557j
  • Sombatmankhong K, Suwantong O, Waleetorncheepsawat S, et al. Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. J Polym Sci B Polym Phys. 2006;44(19):2923–2933. DOI:10.1002/polb.20915
  • Freeman JW. Tissue engineering options for ligament healing. Bone Tissue Regen Insights. 2009;2:BTRI.S2826.
  • Ward IM, Sweeney J, editors. The Mechanical Properties of Polymers: General Considerations.Mechanical Properties of Solid Polymers. 2012. DOI:10.1002/9781119967125.ch2
  • Ghosal K, Chandra A, Roy S, et al. Electrospinning over solvent casting: tuning of mechanical properties of membranes. Sci Rep. 2018;8(1):5058. DOI:10.1038/s41598-018-23378-3
  • Sherman VR, Yang W, Meyers MA. The materials science of collagen. J Mech Behav Biomed Mater. 2015;52:22–50.
  • Brennan DA, Conte AA, Kanski G, et al. Mechanical considerations for electrospun nanofibers in tendon and ligament repair. Adv Healthc Mater. 2018;7(12):1701277. DOI:10.1002/adhm.201701277
  • Vieira T, Carvalho Silva J, Botelho Do Rego AM, et al. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;103:109819.
  • Wang H, Yu J, Fang H, et al. Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation. Polymer. 2018;137:1–12.
  • Qiu W, Huang Y, Teng W, et al. Complete recombinant silk-elastinlike protein-based tissue scaffold. Biomacromolecules. 2010;11(12):3219–3227. DOI:10.1021/bm100469w
  • Baker SR, Banerjee S, Bonin K, et al. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater Sci Eng C Mater Biol Appl. 2016;59:203–212.
  • Chang HC, Sun T, Sultana N, et al. Conductive PEDOT:pSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater Sci Eng C. 2016;61:396–410.
  • Chen M, Patra PK, Warner SB, et al. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng. 2007;13(3):579–587. DOI:10.1089/ten.2006.0205
  • Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1(1):56–64.
  • Pham QP, Sharma U, Mikos AG. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–2805.
  • Laurent C, Liu X, De Isla N, et al. Defining a scaffold for ligament tissue engineering: what has been done, and what still needs to be done. J Cell Immunother. 2018;4(1):4–9. DOI:10.1016/j.jocit.2018.09.002
  • Ribeiro PLL, de Souza Silva G, Druzian JI. Evaluation of the effects of crude glycerol on the production and properties of novel polyhydroxyalkanoate copolymers containing high 11-hydroxyoctadecanoate by Cupriavidus necator IPT 029 and Bacillus megaterium IPT 429. Polym Adv Technol. 2016;27(4):542–549.
  • Ruan D, Zhu T, Huang J, et al. Knitted silk-collagen scaffold incorporated with ligament stem/progenitor cells sheet for anterior cruciate ligament reconstruction and osteoarthritis prevention. ACS Biomater Sci Eng. 2019;5(10):5412–5421. DOI:10.1021/acsbiomaterials.9b01041
  • Bosworth LA, Alam N, Wong JK, et al. Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. J Mater Sci Mater Med. 2013;24(6):1605–1614. DOI:10.1007/s10856-013-4911-8