2,193
Views
0
CrossRef citations to date
0
Altmetric
Focus on Frontline Research on Biomaterials-based Bioengineering for Future Therapy

Recent advances in micro-sized oxygen carriers inspired by red blood cells

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2223050 | Received 23 Mar 2023, Accepted 31 May 2023, Published online: 22 Jun 2023

References

  • Trayhurn P. Oxygen—A critical, but overlooked nutrient. Front Nutr. 2019;6:10. doi: 10.3389/fnut.2019.00010
  • Sarker M, Chen XB, Schreyer DJ. Experimental approaches to vascularisation within tissue engineering constructs. J Biomater Sci Polym Ed. 2015;26(12):683–25. doi: 10.1080/09205063.2015.1059018
  • Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metast Rev. 2007;26(2):225–239. doi: 10.1007/s10555-007-9055-1
  • Bäumler H. Künstliche Sauerstofftransporter können mehr als Sauerstoff liefern. Transfusionsmedizin. 2020;10(4):199–207. doi: 10.1055/a-1119-1796
  • Goodnough LT, Bodner MS, Martin JW. Blood transfusion and blood conservation: cost and utilization issues. Am J Med Qual. 1994;9(4):172–183. doi: 10.1177/0885713X9400900408
  • Gulliksson H, van der Meer PF. Storage of whole blood overnight in different blood bags preceding preparation of blood components: in vitro effects on red blood cells. Blood Transfus. 2009;7:210–215. doi: 10.2450/2009.0074-08
  • Kim HW, Greenburg AG. Artificial oxygen carriers as red blood cell substitutes: a selected review and current status. Artif Organs. 2004;28(9):813–828. doi: 10.1111/j.1525-1594.2004.07345.x
  • Khan F, Singh K, Friedman MT. Artificial blood: the history and current perspectives of blood substitutes. Discoveries. 2020;8:e104. doi: 10.15190/d.2020.1
  • Amberson WR, Jennings JJ, Rhode CM. Clinical experience with hemoglobin-saline solutions. J Appl Physiol. 1949;1(7):469–489. doi: 10.1152/jappl.1949.1.7.469
  • Sen Gupta A. Hemoglobin-based oxygen carriers: current state-of-the-art and novel molecules. Shock. 2019;52(1S):70–83. Lippincott Williams and Wilkins. doi: 10.1097/SHK.0000000000001009
  • Sen Gupta A. Bio‐inspired nanomedicine strategies for artificial blood components. WIREs Nanomed Nanobiotechnol. 2017;9:10.1002. doi: 10.1002/wnan.1464
  • Gould A. Clinical development of human polymerized hemoglobin as a blood substitute. World J Surg. 1996;20:1200–1207. doi: 10.1007/s002689900183
  • Mohanto N, Park Y-J, Jee J-P. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. J Pharm Investig. 2022;53:153–190. doi: 10.1007/s40005-022-00590-y
  • Cao M, Wang G, He H, et al. Hemoglobin-based oxygen carriers: potential applications in solid organ preservation. Front Pharmacol. 2021;12:760215. doi: 10.3389/fphar.2021.760215
  • Kure T, Sakai H. Preparation of artificial red blood cells (hemoglobin vesicles) using the rotation–revolution mixer for high encapsulation efficiency. ACS Biomater Sci Eng. 2021;7(6):2835–2844. doi: 10.1021/acsbiomaterials.1c00424
  • Tomita D, Kimura T, Hosaka H, et al. Covalent core–shell architecture of hemoglobin and human serum albumin as an artificial O 2 carrier. Biomacromolecules. 2013;14(6):1816–1825. doi: 10.1021/bm400204y
  • Clark LC, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science. 1966;152:1755–1756. doi: 10.1126/science.152.3730.1755
  • Riess JG. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to In Vivo oxygen delivery. Artif Cells Blood Substitutes Biotechnol. 2005;33(1):47–63. doi: 10.1081/BIO-200046659
  • Jahr JS, Guinn NR, Lowery DR, et al. Blood substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–129. doi: 10.1213/ANE.0000000000003957
  • Yu M, Dai M, Liu Q, et al. Oxygen carriers and cancer chemo- and radiotherapy sensitization: bench to bedside and back. Cancer Treat Rev. 2007;33(8):757–761. doi: 10.1016/j.ctrv.2007.08.002
  • Vorob’ev SI. First- and second-generation perfluorocarbon emulsions. Pharm Chem J. 2009;43(4):209–218. doi: 10.1007/s11094-009-0268-1
  • Goorha Y, Deb P, Chatterjee T, et al. Artificial blood. Med J Armed Forces India. 2003;59(1):45–50. doi: 10.1016/S0377-1237(03)80107-7
  • Jaegers J, Haferkamp S, Arnolds O, et al. Deciphering the emulsification process to create an albumin-perfluorocarbon-(o/w) nanoemulsion with high shelf life and bioresistivity. Langmuir. 2022;38(34):10351–10361. doi: 10.1021/acs.langmuir.1c03388
  • Okamoto W, Hasegawa M, Usui T, et al. Hemoglobin–albumin clusters as an artificial O 2 carrier: physicochemical properties and resuscitation from hemorrhagic shock in rats. J Biomed Mater Res B Appl Biomater. 2022;110(8):1827–1838. doi: 10.1002/jbm.b.35040
  • Azuma H, Amano T, Kamiyama N, et al. First-in-human phase 1 trial of hemoglobin vesicles as artificial red blood cells developed for use as a transfusion alternative. Blood Adv. 2022;6:5711–5715. doi: 10.1182/bloodadvances.2022007977
  • L’Heureux N, Dusserre N, Marini A, et al. Technology Insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Clin Pract Cardiovasc Med. 2007;4(7):389–395. doi: 10.1038/ncpcardio0930
  • Bah MG, Bilal HM, Wang J. Fabrication and application of complex microcapsules: a review. Soft Matter Royal Society Chem. 2020;16:570–590. doi: 10.1039/C9SM01634A
  • Luo T, Wang Z, He J, et al. Ultrasound-mediated destruction of oxygen and paclitaxel loaded dual-targeting microbubbles for intraperitoneal treatment of ovarian cancer xenografts. Cancer Lett. 2017;391:1–11. doi: 10.1016/j.canlet.2016.12.032
  • Shiga T, Maeda N, Kon K. Erythrocyte rheology. Crit Rev Oncol Hematol. 1990;10(1):9–48. doi: 10.1016/1040-8428(90)90020-S
  • Baskurt OK, Meiselman HJ. Hemodynamic effects of red blood cell aggregation. Indian J Exp Biol. 2007;45:25–31.
  • Ford J. Red blood cell morphology. Int J Lab Hematol. 2013;35(3):351–357. doi: 10.1111/ijlh.12082
  • Diez-Silva M, Dao M, Han J, et al. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 2010;35(5):382–388. doi: 10.1557/mrs2010.571
  • Marchi G, Bozzini C, Bertolone L, et al. Red blood cell morphologic abnormalities in patients hospitalized for COVID-19. Front Physiol. 2022;13:932013. doi: 10.3389/fphys.2022.932013
  • Gijsen FJH, van de Vosse FN, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech. 1999;32(6):601–608. doi: 10.1016/S0021-9290(99)00015-9
  • Kim Y, Kim K, Park Y. Measurement techniques for red blood cell deformability: recent advances. Blood Cell Overview Stud Hematol. 2012;10:167–194. InTech.
  • Nicolaides AN, Horbourne T, Bowers R, et al. Blood viscosity, red-cell flexibility, hæmatocrit, and plasma-fibrinogen in patients with angina. Lancet. 1977;310(8045):943–945. doi: 10.1016/S0140-6736(77)90886-8
  • Noguchi H, Gompper G. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci, USA. 2005;102:14159–14164. doi: 10.1073/pnas.0504243102
  • Nader E, Skinner S, Romana M, et al. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front Physiol. 2019;10:1329. doi: 10.3389/fphys.2019.01329
  • Baskurt OK, Yalcin O, Meiselman HJ. Hemorheology and vascular control mechanisms. Clin Hemorheol Microcirc. 2004;30:169–178.
  • Raj J, Kaapa P, Hillyard R, et al. Pulmonary vascular pressure profile in adult ferrets: measurements in vivo and in isolated lungs. Acta Physiol Scand. 1991;142(1):41–48. doi: 10.1111/j.1748-1716.1991.tb09126.x
  • Parthasarathi K, Lipowsky HH. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol Heart Circ Physiol. 1999;277(6):H2145–H2157. doi: 10.1152/ajpheart.1999.277.6.H2145
  • Vadapalli A, Goldman D, Popel AS. Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries. Artif Cells Blood Substitutes Biotechnol. 2002;30(3):157–188. doi: 10.1081/BIO-120004338
  • Burger P, Korsten H, Verhoeven AJ, et al. Collection and storage of red blood cells with anticoagulant and additive solution with a physiologic pH. Transfusion (Paris). 2012;52(6):1245–1252. doi: 10.1111/j.1537-2995.2011.03472.x
  • Shinar E, Prober G, Yahalom V, et al. WBC filtration of whole blood after prolonged storage at ambient temperature by use of an in-line filter collection system. Transfusion (Paris). 2002;42(6):734–737. doi: 10.1046/j.1537-2995.2002.00118.x
  • Marschner S, Dimberg LY. Pathogen reduction technologies. In: Beth H, Shaz BH, Hillyer CD, Gil MR, editors. Transfusion medicine and hemostasis. Elsevier; 2019. p. 289–293.
  • Hess JR. An update on solutions for red cell storage. Vox Sang. 2006;91(1):13–19. doi: 10.1111/j.1423-0410.2006.00778.x
  • Pulliam KE, Joseph B, Morris MC, et al. Innate coagulability changes with age in stored packed red blood cells. Thromb Res. 2020;195:35–42. doi: 10.1016/j.thromres.2020.06.047
  • Kohli N, Bhaumik S, Jagadesh S, et al. Packed red cells versus whole blood transfusion for severe paediatric anaemia, pregnancy-related anaemia and obstetric bleeding: an analysis of clinical practice guidelines from sub-Saharan Africa and evidence underpinning recommendations. Trop Med Int Health. 2019;24(1):11–22. doi: 10.1111/tmi.13173
  • Kumar H, Gupta P, Mishra D, et al. Leucodepletion and blood products. Med J Armed Forces India. 2006;62(2):174–177. doi: 10.1016/S0377-1237(06)80064-X
  • Gillio-Meina C, Cepinskas G, Cecchini EL, et al. Translational research in pediatrics ii: blood collection, processing, shipping, and storage. Pediatrics. 2013;131(4):754–766. doi: 10.1542/peds.2012-1181
  • Gkoumassi E, Dijkstra-Tiekstra MJ, Hoentjen D, et al. Hemolysis of red blood cells during processing and storage. Transfusion (Paris). 2012;52(3):489–492. doi: 10.1111/j.1537-2995.2011.03298.x
  • Said AS, Rogers SC, Doctor A. Physiologic impact of circulating RBC microparticles upon blood-vascular interactions. Front Physiol. 2018;8:1120. doi: 10.3389/fphys.2017.01120
  • Kriebardis AG, Antonelou MH, Stamoulis KE, et al. Membrane protein carbonylation in non-leukodepleted CPDA-preserved red blood cells. Blood Cells Mol Dis. 2006;36(2):279–282. doi: 10.1016/j.bcmd.2006.01.003
  • Kriebardis AG, Antonelou MH, Stamoulis KE, et al. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J Cell Mol Med. 2007;11(1):148–155. doi: 10.1111/j.1582-4934.2007.00008.x
  • Yoshida T, Prudent M, D’alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019;17:27–52. doi: 10.2450/2019.0217-18
  • Sparrow RL. Red blood cell components: time to revisit the sources of variability. Blood Transfus. 2017;15(2):116–125. doi: 10.2450/2017.0326-16
  • Forbes J, Anderson M, Anderson G, et al. Blood transfusion costs: a multicenter study. Transfusion (Paris). 1991;31(4):318–323. doi: 10.1046/j.1537-2995.1991.31491213295.x
  • Modery-Pawlowski CL, Tian LL, Pan V, et al. Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromolecules. 2013;14(4):939–948. doi: 10.1021/bm400074t
  • Xiong Y, Steffen A, Andreas K, et al. Hemoglobin-based oxygen carrier microparticles: synthesis, properties, and in vitro and in vivo investigations. Biomacromolecules. 2012;13(10):3292–3300. doi: 10.1021/bm301085x
  • Butler MF, Ng Y-F, Pudney PDA. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci A Polym Chem. 2003;41(24):3941–3953. doi: 10.1002/pola.10960
  • Xiong Y, Liu ZZ, Georgieva R, et al. Nonvasoconstrictive hemoglobin particles as oxygen carriers. ACS Nano. 2013;7(9):7454–7461. doi: 10.1021/nn402073n
  • Schakowski KM, Linders J, Ferenz KB, et al. Synthesis and characterisation of aqueous haemoglobin-based microcapsules coated by genipin-cross-linked albumin. J Microencapsul. 2020;37(3):193–204. doi: 10.1080/02652048.2020.1715498
  • Duan L, Yan X, Wang A, et al. Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano. 2012;6(8):6897–6904. doi: 10.1021/nn301735u
  • Anu Bhushani J, Anandharamakrishnan C. Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol. 2014;38(1):21–33. doi: 10.1016/j.tifs.2014.03.004
  • de Sousa Araújo E, Domingues Stocco T, Fernandes de Sousa G, et al. Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy. Colloids Surf B Biointerfaces. 2021;205:111850. doi: 10.1016/j.colsurfb.2021.111850
  • Khorshidi S, Karkhaneh A, Bonakdar S. Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen. J Biomed Mater Res A. 2020;108(1):136–147. doi: 10.1002/jbm.a.36799
  • Morais AIS, Wang X, Vieira EG, et al. Electrospraying oxygen-generating microparticles for tissue engineering applications. Int J Nanomedicine. 2020;15:1173–1186. doi: 10.2147/IJN.S237334
  • Zhang M, Kiratiwongwan T, Shen W. Oxygen-releasing polycaprolactone/calcium peroxide composite microspheres. J Biomed Mater Res B Appl Biomater. 2020;108(3):1097–1106. doi: 10.1002/jbm.b.34461
  • Ma T, Yang Y, Quan X, et al. Oxygen carrier in core-shell fibers synthesized by coaxial electrospinning enhances Schwann cell survival and nerve regeneration. Theranostics. 2020;10(20):8957–8973. doi: 10.7150/thno.45035
  • Zhang L, Huang J, Si T, et al. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices. 2012;9(6):595–612. doi: 10.1586/erd.12.58
  • Yoon J, Yang H-S, Lee B-S, et al. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv Mater. 2018;30(42):1704765. doi: 10.1002/adma.201704765
  • Sawalha H, Schroën K, Boom R. Biodegradable polymeric microcapsules: preparation and properties. Chem Eng J. 2011;169(1–3):1–10. doi: 10.1016/j.cej.2011.02.078
  • Sharipova A, Aidarova S, Mutaliyeva B, et al. The use of polymer and surfactants for the microencapsulation and emulsion stabilization. Colloids And Interfaces. 2017;1(1):3. doi: 10.3390/colloids1010003
  • Fu X, Ohta S, Kamihira M, et al. Size-controlled preparation of microsized perfluorocarbon emulsions as oxygen carriers via the shirasu porous glass membrane emulsification technique. Langmuir. 2019;35(11):4094–4100. doi: 10.1021/acs.langmuir.9b00194
  • Zarzar LD, Sresht V, Sletten EM, et al. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature. 2015;518(7540):520–524. doi: 10.1038/nature14168
  • Nejati S, Karimi-Soflou R, Karkhaneh A. Influence of process parameters on the characteristics of oxygen-releasing poly (lactic acid) microparticles: a multioptimization strategy. Polym Adv Technol. 2021;32(2):829–841. doi: 10.1002/pat.5134
  • Charcosset C, Limayem I, Fessi H. The membrane emulsification process—a review. J Chem Technol Biot. 2004;79(3):209–218. doi: 10.1002/jctb.969
  • Chu L-Y, Xie R, Zhu J-H, et al. Study of SPG membrane emulsification processes for the preparation of monodisperse core–shell microcapsules. J Colloid Interface Sci. 2003;265(1):187–196. doi: 10.1016/S0021-9797(03)00350-3
  • Lai YT, Ohta S, Akamatsu K, et al. Size-dependent interaction of cells and hemoglobin-albumin based oxygen carriers prepared using the SPG membrane emulsification technique. Biotechnol Prog. 2015;31:1676–1684. doi: 10.1002/btpr.2170
  • Lai YT, Sato M, Ohta S, et al. Preparation of uniform-sized hemoglobin-albumin microspheres as oxygen carriers by Shirasu porous glass membrane emulsification technique. Colloids Surf B Biointerfaces. 2015;127:1–7. doi: 10.1016/j.colsurfb.2015.01.018
  • Fu X, Ohta S, Kawakatsu T, et al. Bioinspired perfluorocarbon-based oxygen carriers with concave shape and deformable shell. Adv Mater Technol. 2022;7(3):2100573. doi: 10.1002/admt.202100573
  • Ohta S, Hashimoto K, Fu X, et al. Development of human-derived hemoglobin–albumin microspheres as oxygen carriers using shirasu porous glass membrane emulsification. J Biosci Bioeng. 2018;126(4):533–539. doi: 10.1016/j.jbiosc.2018.04.017
  • Bao D, Zhang H, Liu X, et al. Preparation of monodispersed polymer microspheres by SPG membrane emulsification‐solvent evaporation technology. J Dispers Sci Technol. 2007;28(3):485–490. doi: 10.1080/01932690601108052
  • Nakashima T, Shimizu M, Kukizaki M. Particle control of emulsion by membrane emulsification and its applications. Adv Drug Deliv Rev. 2000;45(1):47–56. doi: 10.1016/S0169-409X(00)00099-5
  • Duncanson WJ, Lin T, Abate AR, et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip. 2012;12(12):2135. doi: 10.1039/c2lc21164e
  • Upadhyay A, Dalvi SV. Microbubble formulations: synthesis, stability, modeling and biomedical applications. Ultrasound Med Biol. 2019;45:301–343. doi: 10.1016/j.ultrasmedbio.2018.09.022
  • Castro-Hernández E, van Hoeve W, Lohse D, et al. Microbubble generation in a co-flow device operated in a new regime. Lab Chip. 2011;11(12):2023. doi: 10.1039/c0lc00731e
  • Vutha AK, Patenaude R, Cole A, et al. A microfluidic device for real-time on-demand intravenous oxygen delivery. Proc Natl Acad Sci. 2022;119:e2115276119. doi: 10.1073/pnas.2115276119
  • Ma R, Wu Q, Si T, et al. Oxygen and indocyanine green loaded microparticles for dual-mode imaging and sonodynamic treatment of cancer cells. Ultrason Sonochem. 2017;39:197–207. doi: 10.1016/j.ultsonch.2017.03.019
  • Xu J, Yuan S, Tian J, et al. Ultrasound mediated delivery of oxygen and LLL12 loaded stimuli responsive microdroplets for the treatment of hypoxic cancer cells. Sci Rep. 2017;7(1):44908. doi: 10.1038/srep44908
  • Liu G, Wu Q, Dwivedi P, et al. Hemoglobin-laden microcapsules for simulating oxygen dynamics of biological tissue. ACS Biomater Sci Eng. 2018;4(9):3177–3184. doi: 10.1021/acsbiomaterials.8b00830
  • Sadek SH, Rubio M, Lima R, et al. Blood particulate analogue fluids: a review. Materials. 2021;14:2451. doi: 10.3390/ma14092451
  • de Koker S, Hoogenboom R, de Geest BG. Polymeric multilayer capsules for drug delivery. Chem Soc Rev. 2012;41(7):2867. doi: 10.1039/c2cs15296g
  • Ariga K, Yamauchi Y, Rydzek G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett. 2014;43(1):36–68. doi: 10.1246/cl.130987
  • Doshia N, Zahra L, Bhaskar S, et al. Red blood cell-mimicking synthetic biomaterial particles. PNAS. 2009;106:21495–21499. doi: 10.1073/pnas.0907127106
  • Shaillender M, Luo R, Venkatraman SS, et al. Layer-by-layer microcapsules templated on erythrocyte ghost carriers. Int J Pharm. 2011;415(1–2):211–217. doi: 10.1016/j.ijpharm.2011.06.011
  • Guo J, Agola JO, Serda R, et al. Biomimetic rebuilding of multifunctional red blood cells: modular design using functional components. ACS Nano. 2020;14(7):7847–7859. doi: 10.1021/acsnano.9b08714
  • She S, Li Q, Shan B, et al. Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv Mater. 2013;25(40):5814–5818. doi: 10.1002/adma.201302875
  • Yu C, Qian D, Huang X, et al. Construction of biconcave hemoglobin-based microcapsules and electrochemical evaluation for its ability of oxygen carry. Sens Actuators B Chem. 2018;256:217–225. doi: 10.1016/j.snb.2017.09.166
  • Gratton SEA, Pohlhaus PD, Lee J, et al. Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT™ nanoparticles. J Controlled Release. 2007;121:10–18. doi: 10.1016/j.jconrel.2007.05.027
  • Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci. 2011;108:586–591. doi: 10.1073/pnas.1010013108
  • Chen K, Merkel TJ, Pandya A, et al. Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromolecules. 2012;13(9):2748–2759. doi: 10.1021/bm3007242
  • Alayash AI. Blood substitutes: why haven’t we been more successful? Trends Biotechnol. 2014;32(4):177–185. doi: 10.1016/j.tibtech.2014.02.006
  • Chen J-Y, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics. 2009;64(8):803–813. doi: 10.1590/S1807-59322009000800016
  • Li T, Jing X, Huang Y. Polymer/Hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells. Macromol biosci. 2011;11:865–875. doi: 10.1002/mabi.201000469
  • Klibanov AL, Maruyama K, Beckerleg AM, et al. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta - Biomembr. 1991;1062(2):142–148. doi: 10.1016/0005-2736(91)90385-L
  • Sun J, Huang Y, Shi Q, et al. Oxygen carrier based on hemoglobin/Poly(L-lysine)- block -poly(L -phenylalanine) vesicles. Langmuir. 2009;25:13726–13729. doi: 10.1021/la901194k
  • Wang S, Yuan F, Chen K, et al. Synthesis of hemoglobin conjugated polymeric micelle: a ZnPc carrier with oxygen self-compensating ability for photodynamic therapy. Biomacromolecules. 2015;16(9):2693–2700. doi: 10.1021/acs.biomac.5b00571
  • Wu B, Sun Z, Wu J, et al. Nanoparticle-stabilized oxygen microcapsules prepared by interfacial polymerization for enhanced oxygen delivery. Angew Chem Int Ed. 2021;60:9284–9289. doi: 10.1002/anie.202100752
  • Komatsu T. Albumin-Heme Oxygen Carriers. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 339–348. doi: 10.1007/978-3-642-40717-8_18
  • Liu Y, Zhao X, Zhao C, et al. Responsive porous microcarriers with controllable oxygen delivery for wound healing. Small. 2019;15(21):1901254. doi: 10.1002/smll.201901254
  • Zhang X, Chen G, Liu Y, et al. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901–5908. doi: 10.1021/acsnano.0c01059
  • Wang Q, Gong J, Bai Q, et al. Hemoglobin coated oxygen storage metal-organic framework as a promising artificial oxygen carrier. J Mater Chem B. 2021;9:4002–4005. doi: 10.1039/D1TB00328C
  • An HZ, Safai ER, Burak Eral H, et al. Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography. Lab Chip. 2013;13(24):4765. doi: 10.1039/c3lc50610j
  • Lee H-Y, Kim H-W, Lee JH, et al. Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment. Biomaterials. 2015;53:583–591. doi: 10.1016/j.biomaterials.2015.02.117
  • Jung AR, Park YH, Kim GE, et al. Stem cell/oxygen-releasing microparticle enhances erectile function in a cavernous nerve injury model. Tissue Eng Part A. 2021;27(1–2):50–62. doi: 10.1089/ten.tea.2019.0240
  • Zhu Y, Chian KS, Chan-Park MB, et al. Protein bonding on biodegradable poly(l-lactide-co-caprolactone) membrane for esophageal tissue engineering. Biomaterials. 2006;27(1):68–78. doi: 10.1016/j.biomaterials.2005.05.069
  • Wu T, Zheng H, Chen J, et al. Application of a bilayer tubular scaffold based on electrospun poly (L-lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. J Mater Chem B. 2017;5:139–150. doi: 10.1039/C6TB02484J
  • Engelhardt E-M, Micol LA, Houis S, et al. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials. 2011;32(16):3969–3976. doi: 10.1016/j.biomaterials.2011.02.012
  • Li Z, Guo X, Guan J. An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials. 2012;33(25):5914–5923. doi: 10.1016/j.biomaterials.2012.05.012
  • Khorshidi S, Karkhaneh A. A hydrogel/particle composite with gradient in oxygen releasing microparticle for oxygenation of the cartilage-to-bone interface: modeling and experimental viewpoints. Mater Sci Eng C. 2021;118:111522. doi: 10.1016/j.msec.2020.111522
  • Touri M, Moztarzadeh F, Abu Osman NA, et al. Oxygen-releasing scaffolds for accelerated bone regeneration. ACS Biomater Sci Eng. 2020;6(5):2985–2994. doi: 10.1021/acsbiomaterials.9b01789
  • Choi J, Hong G, Kwon T, et al. Fabrication of oxygen releasing scaffold by embedding H2O2-PLGA microspheres into alginate-based hydrogel sponge and its application for wound healing. Appl Sci (Switzerland). 2018;8(9):1492. doi: 10.3390/app8091492
  • Mahaseth T, Kuzminov A. Potentiation of hydrogen peroxide toxicity: from catalase inhibition to stable DNA-iron complexes. Mutat Res/Rev Mutat Res. 2017;773:274–281. doi: 10.1016/j.mrrev.2016.08.006
  • Gholipourmalekabadi M, Zhao S, Harrison BS, et al. Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering? Trends Biotechnol. 2016;34(12):1010–1021. doi: 10.1016/j.tibtech.2016.05.012
  • Mohseni-Vadeghani E, Karimi-Soflou R, Khorshidi S, et al. Fabrication of oxygen and calcium releasing microcarriers with different internal structures for bone tissue engineering: solid filled versus hollow microparticles. Colloids Surf B Biointerfaces. 2021;197:111376. doi: 10.1016/j.colsurfb.2020.111376
  • Matsuki N, Ichiba S, Ishikawa T, et al. Blood oxygenation using microbubble suspensions. Eur Biophys J. 2012;41:571–578. doi: 10.1007/s00249-012-0811-y
  • Pagureva N, Tcholakova S, Rusanova K, et al. Factors affecting the coalescence stability of microbubbles. Colloids Surf A Physicochem Eng Asp. 2016;508:21–29. doi: 10.1016/j.colsurfa.2016.08.012
  • Katiyar A, Sarkar K. Stability analysis of an encapsulated microbubble against gas diffusion. J Colloid Interface Sci. 2010;343(1):42–47. doi: 10.1016/j.jcis.2009.11.030
  • Reusser TD, Ramirez D, Benninger RK, et al. Designing oxygen microbubbles for treating tumor hypoxia. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, Scotland: IEEE; 2019. p. 1338–1341.
  • Liu W, Liu T, Zou M, et al. Aggressive man‐made red blood cells for hypoxia‐resistant photodynamic therapy. Adv Mater. 2018;30(35):1802006. doi: 10.1002/adma.201802006
  • Cherwin A, Namen S, Rapacz J, et al. Design of a novel oxygen therapeutic using polymeric hydrogel microcapsules mimicking red blood cells. Pharmaceutics. 2019;11(11):583. doi: 10.3390/pharmaceutics11110583
  • Dulińska I, Targosz M, Strojny W, et al. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods. 2006;66(1–3):1–11. doi: 10.1016/j.jbbm.2005.11.003
  • Simoni J. Artificial oxygen carriers: scientific and biotechnological points of view. Artif Organs. 2009;33:92–96.
  • Radisic M, Deen W, Langer R, et al. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol. 2005;288(3):H1278–H1289. doi: 10.1152/ajpheart.00787.2004
  • Qadir MMF, Álvarez-Cubela S, Weitz J, et al. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat Commun. 2020;11(1):3265. doi: 10.1038/s41467-020-17040-8
  • Shoemaker JT, Zhang W, Atlas SI, et al. A 3D cell culture organ-on-a-chip platform with a breathable hemoglobin analogue augments and extends primary human hepatocyte functions in vitro. Front Mol Biosci. 2020;7:568777. doi: 10.3389/fmolb.2020.568777
  • Gerecht-Nir S, Radisic M, Park H, et al. Biophysical regulation during cardiac development and application to tissue engineering. Int J Dev Biol. 2006;50(2–3):233–243. doi: 10.1387/ijdb.052041sg
  • Pretini V, Koenen MH, Kaestner L, et al. Red blood cells: chasing interactions. Front Physiol. 2019;10:945. doi: 10.3389/fphys.2019.00945
  • Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334:1642–1648. doi: 10.1056/NEJM199606203342506
  • Leach RM, Rees PJ, Wilmshurst P. ABC of oxygen: hyperbaric oxygen therapy. Br Med J. 1998;317(7166):1140–1143. doi: 10.1136/bmj.317.7166.1140
  • Behnke AR, Shaw LA. The use of oxygen in the treatment of compressed air illness. U S Nav Med Bull. 1937;35:61–73.
  • Edwards ML. Hyperbaric oxygen therapy. Part 2: application in disease. J Vet Emerg Crit Care. 2010;20(3):289–297. doi: 10.1111/j.1476-4431.2010.00535_1.x
  • Bean JW. Effects of oxygen at increased pressure. Physiol Rev. 1945;25(1):1–147. doi: 10.1152/physrev.1945.25.1.1
  • John Kirby P, Snyder J, Schuerer DJ, et al. Essentials of hyperbaric oxygen therapy: 2019 review. Mo Med. 2019;116:176–179. doi: 10.1152/japplphysiol.90991.2008
  • Raut MS, Maheshwari A. Oxygen supplementation in acute myocardial infarction: to be or not to be? Ann card anaesth. 2016;19(2):342–344. doi: 10.4103/0971-9784.179594
  • Abuzaid A, Fabrizio C, Felpel K, et al. Oxygen therapy in patients with acute myocardial infarction: a systemic review and meta-analysis. Am j med. 2018;131(6):693–701. doi: 10.1016/j.amjmed.2017.12.027
  • François Oko Pettis Edinguele W, Barberon B, Poussard J, et al. Middle-ear barotrauma after hyperbaric oxygen therapy: a five-year retrospective analysis on 2,610 patients. Undersea Hyperbaric Med. 2020;47:217–228. doi: 10.22462/04.06.2020.7
  • Heyboer M, Wojcik SM, Grant WD, et al. Middle ear barotrauma in hyperbaric oxygen therapy. Undersea Hyperbaric Med. 2014;41:393–397.
  • Liu Z, Barber C, Gupta A, et al. Imaging assessment of cardioprotection mediated by a dodecafluoropentane oxygen-carrier administered during myocardial infarction. Nucl Med Biol. 2019;70:67–77. doi: 10.1016/j.nucmedbio.2019.01.004
  • Qin X, Zhou Y, Wang Y, et al. Preparation and characterization of protein-loaded PFC nanoemulsions for the treatment of heart diseases by pulmonary administration. Eur J Pharmaceut Sci. 2021;158:105690. doi: 10.1016/j.ejps.2020.105690
  • Ma T, Wang Y, Qi F, et al. The effect of synthetic oxygen carrier-enriched fibrin hydrogel on Schwann cells under hypoxia condition invitro. Biomaterials. 2013;34(38):10016–10027. doi: 10.1016/j.biomaterials.2013.09.047
  • Wang Y, Qi F, Zhu S, et al. A synthetic oxygen carrier in fibrin matrices promotes sciatic nerve regeneration in rats. Acta Biomater. 2013;9(7):7248–7263. doi: 10.1016/j.actbio.2013.03.024
  • Kim HY, Kim SY, Lee HY, et al. Oxygen-releasing microparticles for cell survival and differentiation ability under hypoxia for effective bone regeneration. Biomacromolecules. 2019;20(2):1087–1097. doi: 10.1021/acs.biomac.8b01760
  • Hwang SC, Hwang DS, Kim HY, et al. Development of bone regeneration strategies using human periosteum-derived osteoblasts and oxygen-releasing microparticles in mandibular osteomyelitis model of miniature pig. J Biomed Mater Res A. 2019;107(10):2183–2194. doi: 10.1002/jbm.a.36728
  • Hunt SD, Elg F. Clinical effectiveness of hemoglobin spray (Granulox ®) as adjunctive therapy in the treatment of chronic diabetic foot ulcers. Diabet Foot Ankle. 2016;7:33101. doi: 10.3402/dfa.v7.33101
  • Bai Q, Zheng C, Sun N, et al. Oxygen-releasing hydrogels promote burn healing under hypoxic conditions. Acta Biomater. 2022;154:231–243. doi: 10.1016/j.actbio.2022.09.077
  • Chen H, Cheng Y, Tian J, et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv. 2020;6(20):eaba4311. doi: 10.1126/sciadv.aba4311
  • Dadkhah Tehrani F, Shabani I, Shabani A. A hybrid oxygen-generating wound dressing based on chitosan thermosensitive hydrogel and decellularized amniotic membrane. Carbohydr Polym. 2022;281:119020. doi: 10.1016/j.carbpol.2021.119020
  • Nasralla D, Coussios CC, Mergental H, et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557(7703):50–56. doi: 10.1038/s41586-018-0047-9
  • Cypel M, Yeung JC, Liu M, et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N Engl J Med. 2011;364(15):1431–1440. doi: 10.1056/NEJMoa1014597
  • Jägers J, Kirsch M, Cantore M, et al. Artificial oxygen carriers in organ preservation: dose dependency in a rat model of ex‐vivo normothermic kidney perfusion. Artif Organs. 2022;46(9):1783–1793. doi: 10.1111/aor.14264
  • Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–273. doi: 10.1038/nature13034
  • Ellsworth ML. The red blood cell as an oxygen sensor: what is the evidence? Acta Physiol Scand. 2000;168(4):551–559. doi: 10.1046/j.1365-201x.2000.00708.x
  • Liu Y, Wang Q, She P, et al. Chitosan-coated hemoglobin microcapsules for use in an electrochemical sensor and as a carrier for oxygen. Mikrochim Acta. 2016;183(11):2847–2854. doi: 10.1007/s00604-016-1908-2
  • Ahn K-S, Lee JH, Park J-M, et al. Luminol chemiluminescence biosensor for glycated hemoglobin (HbA1c) in human blood samples. Biosens Bioelectron. 2016;75:82–87. doi: 10.1016/j.bios.2015.08.018
  • Liu Y, Gong J, Wu W, et al. A novel bio-nanocomposite based on hemoglobin and carboxyl graphene for enhancing the ability of carrying oxygen. Sens Actuators B Chem. 2016;222:588–597. doi: 10.1016/j.snb.2015.08.101
  • Willemen NGA, Hassan S, Gurian M, et al. Oxygen-releasing biomaterials: current challenges and future applications. Trends Biotechnol. 2021;39:1144–1159. Elsevier Ltd. doi: 10.1016/j.tibtech.2021.01.007