1,502
Views
0
CrossRef citations to date
0
Altmetric
Focus On Nanoarchitectonics Reloaded: Method For Everything In Materials Science

Synthesis of millimeter-scale ZIF-8 single crystals and their reversible crystal structure changes

, , , , , , , , & show all
Article: 2292485 | Received 03 Jul 2023, Accepted 24 Nov 2023, Published online: 19 Jan 2024

References

  • Abdelhamid HN. Removal of carbon dioxide using zeolitic imidazolate frameworks: adsorption and conversion via catalysis. Appl Organomet Chem. 2022;36(8):e6753. doi: 10.1002/aoc.6753
  • Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci. 2006;103(27):10186–7. doi: 10.1073/pnas.0602439103
  • Kaneti YV, Dutta S, Hossain MSA, et al. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater. 2017;29(38):1700213. doi: 10.1002/adma.201700213
  • Wang Q, Sun Y, Li S, et al. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 2020;10(62):37600–37620. doi: 10.1039/D0RA07950B
  • Han S, Wei Y, Valente C, et al. Chromatography in a single metal−organic framework (MOF) crystal. J Am Chem Soc. 2010;132(46):16358–16361. doi: 10.1021/ja1074322
  • Kim M, Park T, Wang C, et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Appl Mater Interfaces. 2020;12(30):34065–34073. doi: 10.1021/acsami.0c07467
  • Kim M, Xu X, Xin R, et al. KOH-Activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl Mater Interfaces. 2021;13(44):52034–52043. doi: 10.1021/acsami.1c09107
  • Mo Z, Tai D, Zhang H, et al. A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem Eng J. 2022;443:136320. doi: 10.1016/j.cej.2022.136320
  • Elaouni A, El Ouardi M, Zbair M, et al. ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Adv. 2022;12(49):31801–31817. doi: 10.1039/D2RA05717D
  • Karagiaridi O, Lalonde MB, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc. 2012;134(45):18790–18796. doi: 10.1021/ja308786r
  • Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008;319(5865):939–943. doi: 10.1126/science.1152516
  • Zhang Y, Jia Y, Li M, et al. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Sci Rep. 2018;8(1):9597. doi: 10.1038/s41598-018-28015-7
  • Tanaka S, Kida K, Okita M, et al. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chem Lett. 2012;41(10):1337–1339. doi: 10.1246/cl.2012.1337
  • Akhundzadeh Tezerjani A, Halladj R, Askari S. Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Adv. 2021;11(32):19914–19923. doi: 10.1039/D1RA02856A
  • Fan X, Wang W, Li W, et al. Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl Mater Interfaces. 2014;6(17):14994–14999. doi: 10.1021/am5028346
  • Moh PY, Brenda M, Anderson MW, et al. Crystallisation of solvothermally synthesised ZIF-8 investigated at the bulk, single crystal and surface level. Cryst Eng Comm. 2013;15(45):9672–9678. doi: 10.1039/c3ce40943k
  • Tran UPN, Le KKA, Phan NTS. Expanding applications of metal−organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal. 2011;1(2):120–127. doi: 10.1021/cs1000625
  • Chen C, Ozcan A, Yazaydin AO, et al. Gas permeation through single-crystal ZIF-8 membranes. J Membr Sci. 2019;575:209–216. doi: 10.1016/j.memsci.2019.01.027
  • Takamizawa S, Takasaki Y, Miyake R. Single-crystal membrane for anisotropic and efficient gas permeation. J Am Chem Soc. 2010;132(9):2862–2863. doi: 10.1021/ja910492d
  • Lee Y-R, Jang M-S, Cho H-Y, et al. ZIF-8: a comparison of synthesis methods. Chem Eng J. 2015;271:276–280. doi: 10.1016/j.cej.2015.02.094
  • Kim YJ, Kim M-Z, Alam SF, et al. Polarity-dependent particle size of zeolitic imidazolate framework synthesized in various solvents. Mater Chem Phys. 2021;259:124021. doi: 10.1016/j.matchemphys.2020.124021
  • Gagnon KJ, Beavers CM, Clearfield A. MOFs under pressure: the reversible compression of a single crystal. J Am Chem Soc. 2013;135(4):1252–1255. doi: 10.1021/ja311613p
  • Ashling CW, Lampronti GI, Southern TJF, et al. Thermal expansion of metal–organic framework crystal–glass composites. Inorg Chem. 2022;61(46):18458–18465. doi: 10.1021/acs.inorgchem.2c02663
  • Babaei H, Meihaus KR, Long JR. Reversible thermal conductivity switching using flexible metal–organic frameworks. Chem Mater. 2023;35(16):6220–6226. doi: 10.1021/acs.chemmater.3c00496
  • Liu D, Liu T-F, Chen Y-P, et al. A reversible crystallinity-preserving phase transition in metal–organic frameworks: discovery, mechanistic studies, and potential applications. J Am Chem Soc. 2015;137(24):7740–7746. doi: 10.1021/jacs.5b02999
  • Nakatsuka S, Watanabe Y, Kamakura Y, et al. Solvent-vapor-induced Reversible Single-crystal-to-Single-crystal transformation of a triphosphaazatriangulene-based metal–organic framework. Angew Chem Int Ed. 2020;59(4):1435–1439. doi: 10.1002/anie.201912195
  • Morris W, Stevens CJ, Taylor RE, et al. NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. J Phys Chem C. 2012;116(24):13307–13312. doi: 10.1021/jp303907p
  • Moggach SA, Bennett TD, Cheetham AK. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew Chem Int Ed. 2009;48(38):7087–7089. doi: 10.1002/anie.200902643
  • Hobday CL, Woodall CH, Lennox MJ, et al. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat Commun. 2018;9(1):1429. doi: 10.1038/s41467-018-03878-6
  • Matsumoto T, Yamano A, Sato T, et al. ”What is this?” A structure analysis tool for rapid and automated solution of small molecule structures. J Chem Crystallogr. 2021;51(3):438–450. doi:10.1007/s10870-020-00867-w
  • Sheldrick G. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr Sect A. 2015;71(1):3–8. doi: 10.1107/S2053273314026370
  • García-Palacín M, Martínez JI, Paseta L, et al. Sized-Controlled ZIF-8 Nanoparticle synthesis from recycled mother liquors: environmental impact assessment. ACS Sustain Chem Eng. 2020;8(7):2973–2980. doi: 10.1021/acssuschemeng.9b07593
  • Shi Z, Yu Y, Fu C, et al. Water-based synthesis of zeolitic imidazolate framework-8 for CO2 capture. RSC Adv. 2017;7(46):29227–29232. doi: 10.1039/C7RA04875K
  • Hu L, Chen L, Fang Y, et al. Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous Mesoporous Mater. 2018;268:207–215. doi: 10.1016/j.micromeso.2018.04.039
  • Jing Y, Lei Q, Xia C, et al. Synthesis of ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect. RSC Adv. 2020;10(2):698–704. doi: 10.1039/C9RA10100D
  • Bergaoui M, Khalfaoui M, Awadallah-F A, et al. A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons. J Nat Gas Sci Eng. 2021;96:104289. doi: 10.1016/j.jngse.2021.104289
  • Mittal H, Ivaturi A, Khanuja M. MoSe2-modified ZIF-8 novel nanocomposite for photocatalytic remediation of textile dye and antibiotic-contaminated wastewater. Environ Sci Pollut Res. 2023;30(2):4151–4165. doi: 10.1007/s11356-022-22487-x
  • Jian M, Liu B, Liu R, et al. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 2015;5(60):48433–48441. doi: 10.1039/C5RA04033G
  • Venna SR, Jasinski JB, Carreon MA. Structural evolution of zeolitic imidazolate framework-8. J Am Chem Soc. 2010;132(51):18030–18033. doi: 10.1021/ja109268m
  • Santoso E, Ediati R, Istiqomah Z, et al. Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue. Microporous Mesoporous Mater. 2021 Jan 1;310:110620. doi:10.1016/j.micromeso.2020.110620
  • Adnan M, Li K, Wang J, et al. Hierarchical ZIF-8 toward immobilizing Burkholderia cepacia lipase for application in biodiesel preparation. Int J Mol Sci. 2018;19(5):1424. doi: 10.3390/ijms19051424
  • Wu C-S, Xiong Z-H, Li C, et al. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv. 2015;5(100):82127–82137. doi: 10.1039/C5RA15497A
  • de Moura Ferraz LR, Tabosa AÉGA, da Silva Nascimento DDS, et al. ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Sci Rep. 2020;10(1):16815. doi: 10.1038/s41598-020-73848-w