1,027
Views
0
CrossRef citations to date
0
Altmetric
Energy Materials

A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2300697 | Received 28 Sep 2023, Accepted 26 Dec 2023, Published online: 18 Jan 2024

References

  • Ding D, Yaroshchuk A, Bruening ML. Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J Membr Sci. 2022;647:120294. doi: 10.1016/j.memsci.2022.120294
  • Avci AH, Messana DA, Santoro S, et al. Energy harvesting from brines by reverse electrodialysis using nafion membranes. Membranes. 2020 Jul 28;10(8):168–15. doi: 10.3390/membranes10080168
  • Zhu LY, Li YC, Liu J, et al. Recent developments in high-performance nafion membranes for hydrogen fuel cells applications. Petroleum Sci. 2022;19(3):1371–1381. doi: 10.1016/j.petsci.2021.11.004
  • Ke Y, Yuan W, Zhou F, et al. A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renew Sust Energ Rev. 2021;145:110860. doi: 10.1016/j.rser.2021.110860
  • Okonkwo PC, Ben Belgacem I, Emori W, et al. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review. Int J Hydrogen Energy. 2021;46(55):27956–27973. doi: 10.1016/j.ijhydene.2021.06.032
  • Thiam BG, Vaudreuil S. Review—Recent membranes for vanadium redox flow batteries. J Electrochem Soc. 2021;168(7):070553. doi: 10.1149/1945-7111/ac163c
  • Zhao N, Platt A, Riley H, et al. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries. J Energy Storage. 2023;72:108321. doi: 10.1016/j.est.2023.108321
  • Huang SL, Yu HF, Lin YS. Modification of Nafion® membrane via a sol-gel route for vanadium redox flow energy storage battery applications. J Chem. 2017;2017:1–10. doi: 10.1155/2017/4590952
  • Ye J, Yuan D, Ding M, et al. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery. J Power Sources. 2021;482:229023. doi: 10.1016/j.jpowsour.2020.229023
  • Sha’rani SS, Abouzari-Lotf E, Nasef MM, et al. Improving the redox flow battery performance of low-cost thin polyelectrolyte membranes by layer-by-layer surface assembly. J Power Sources. 2019;413:182–190. doi: 10.1016/j.jpowsour.2018.12.037
  • Gupta D, Varghese BS, Suresh M, et al. Nanoarchitectonics: functional nanomaterials and nanostructures—a review. J Nanopart Res. 2022;24(10):196. doi: 10.1007/s11051-022-05577-2
  • Durmaz EN, Sahin S, Virga E, et al. Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities. ACS Appl Polym Mater. 2021 Sep 10;3(9):4347–4374. doi: 10.1021/acsapm.1c00654
  • Yuan W, Weng GM, Lipton J, et al. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: approaches, properties, and applications. Adv Colloid Interface Sci. 2020;282:102200. doi: 10.1016/j.cis.2020.102200
  • Wang C, Park MJ, Yu H, et al. Recent advances of nanocomposite membranes using layer-by-layer assembly. J Membr Sci. 2022;661:120926. doi: 10.1016/j.memsci.2022.120926
  • Xi J, Wu Z, Teng X, et al. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem. 2008;18(11):1232–1238. doi: 10.1039/b718526j
  • Wang Y, Wang S, Xiao M, et al. Layer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery. RSC Adv. 2013;3(35):15467–15474. doi: 10.1039/c3ra41670d
  • Wang Y, Wang S, Xiao M, et al. Preparation and characterization of a novel layer-by-layer porous composite membrane for vanadium redox flow battery (VRB) applications. Int J Hydrogen Energy. 2014;39(28):16088–16095. doi: 10.1016/j.ijhydene.2014.02.100
  • Teng X, Yu C, Wu X, et al. PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application. J Mater Sci. 2017;53(7):5204–5215. doi: 10.1007/s10853-017-1903-y
  • Vlasov VI, Gvozdik NA, Mokrousov MD, et al. Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery. J Power Sources. 2022;540:231640. doi: 10.1016/j.jpowsour.2022.231640
  • Zhang L, Ling L, Xiao M, et al. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures. J Power Sources. 2017;352:111–117. doi: 10.1016/j.jpowsour.2017.03.124
  • Lu S, Wu C, Liang D, et al. Layer-by-layer self-assembly of Nafion–[CS–PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Adv. 2014;4(47):24831–24837. doi: 10.1039/C4RA01775G
  • Yoo HY, Heo A, Cho CG. Crosslinkable layer-by-layer assembled Sulfonated Poly(phenylene oxide) membrane based on Nafion for vanadium redox flow battery. J Nanosci Nanotechnol. 2016;16(10):10515–10519. doi: 10.1166/jnn.2016.13186
  • Joshi RK, Alwarappan S, Yoshimura M, et al. Graphene oxide: the new membrane material. Appl Mater Today. 2015;1(1):1–12. doi: 10.1016/j.apmt.2015.06.002
  • Tian Y, Yu Z, Cao L, et al. Graphene oxide: an emerging electromaterial for energy storage and conversion. J Energy Chem. 2021;55:323–344. doi: 10.1016/j.jechem.2020.07.006
  • Lou X, Yuan D, Yu Y, et al. A cost-effective nafion composite membrane as an effective vanadium-ion barrier for vanadium redox flow batteries. Chem Asian J. 2020 Aug 3;15(15):2357–2363. doi: 10.1002/asia.202000140
  • Ye J, Liu J, Zheng C, et al. Simple acid etched graphene oxide constructing high-performance sandwich structural hybrid membrane for redox flow battery. Sustainable Mater Technol. 2023;35:e00550. doi: 10.1016/j.susmat.2022.e00550
  • Su L, Zhang D, Peng S, et al. Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery. Int J Hydrogen Energy. 2017;42(34):21806–21816. doi: 10.1016/j.ijhydene.2017.07.049
  • Li D, Muller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotech. 2008 Feb;3(2):101–105.
  • Gosse AJ, Nunes KC, Komsiyska L, et al. Layer-by-layer modification of nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. J Membr Sci. 2016;510:259–269. doi: 10.1016/j.memsci.2016.03.005
  • Chen S, Mao C, Hu B, et al. Simultaneous improvement of flux and monovalent selectivity of multilayer polyelectrolyte membranes by ion-imprinting. Desalination. 2022;540:115987. doi: 10.1016/j.desal.2022.115987
  • Li Z, Hu K, Feng X. Concentration of potassium acetate solutions via sweeping gas pervaporation using TFC membranes comprising of a PDA sublayer and PEI/PAA bilayers. Sep Purif Technol. 2021;277:119429. doi: 10.1016/j.seppur.2021.119429
  • Tang W, Leng S, Jin Y, et al. New crosslinked membranes based on cardo-poly(etherketone) and poly(ethylene imine) for the vanadium redox flow battery. Eur Polym J. 2021;161:110858. doi: 10.1016/j.eurpolymj.2021.110858
  • Mehboob S, Lee JY, Hun Ahn J, et al. Perfect capacity retention of all-vanadium redox flow battery using Nafion/polyaniline composite membranes. J Ind Eng Chem. 2023;121:348–357. doi: 10.1016/j.jiec.2023.01.038
  • Sigwadi R, Dhlamini MS, Mokrani T, et al. The proton conductivity and mechanical properties of Nafion(R)/ZrP nanocomposite membrane. Heliyon. 2019;5(8):e02240. doi: 10.1016/j.heliyon.2019.e02240
  • Grenda K, Idström A, Evenäs L, et al. An analytical approach to elucidate the architecture of polyethyleneimines. J Appl Polym Sci. 2021;139(7):51657. doi: 10.1002/app.51657
  • Halakoo E, Feng X. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol. J Membr Sci. 2020;616:118583. doi: 10.1016/j.memsci.2020.118583
  • Vaishnavi PSV, Kar S, Adak AK, et al. Surface modification of thin film composite nanofiltration membrane with graphene oxide by varying amine linkers: synthesis, characterization, and applications. J Membr Sci. 2023;687:122021. doi: 10.1016/j.memsci.2023.122021
  • Shin GJ, Rhee K, Park SJ. Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int J Hydrogen Energy. 2016;41(32):14351–14359. doi: 10.1016/j.ijhydene.2016.05.162
  • Halakoo E, Feng X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Sep Purif Technol. 2020;234:116077. doi: 10.1016/j.seppur.2019.116077
  • Farivar F, Lay Yap P, Karunagaran RU, et al. Thermogravimetric analysis (TGA) of graphene materials: effect of particle size of graphene, graphene oxide and graphite on thermal parameters. C. 2021;7(2):41. doi: 10.3390/c7020041
  • NSA H, SK K, Karim NA. Potential of Nafion/eggshell composite membrane for application in direct methanol fuel cell. Int J Energy Res. 2020;45(2):2245–2264. doi: 10.1002/er.5917
  • Chen Y, Zhong C, Wu J, et al. One-step synthesis of 3D pore-structured adsorbent by cross-linked PEI and graphene oxide sheets and its application in CO2 adsorption. Langmuir. 2022;38(46):14192–14199. doi: 10.1021/acs.langmuir.2c02205
  • Yu J, He Y, Wang Y, et al. Graphene oxide nanofiltration membrane for efficient dyes separation by hexagonal boron nitride nanosheets intercalation and polyethyleneimine surface modification. Colloids Surf A Physicochem Eng Asp. 2023;656:130367. doi: 10.1016/j.colsurfa.2022.130367
  • Yu S, Zhu ZH, Zhou MQ, et al. Fabrication and characterization of a novel Nafion-PTFE composite hollow fiber membrane. J Appl Polym Sci. 2021;138(16):50254. doi: 10.1002/app.50254
  • Jia T, Shen S, Xiao L, et al. Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes. Eur Polym J. 2020;122:109362. doi: 10.1016/j.eurpolymj.2019.109362
  • Wang G, Yang S, Kang NY, et al. Sulfonated graphene oxide doped sulfonated polybenzothiazoles for proton exchange membrane fuel cells. J Membr Sci. 2023;668:121239. doi: 10.1016/j.memsci.2022.121239
  • Hossain SI, Aziz MA, Shanmugam S. Ultrahigh ion-selective and durable Nafion-NdZr composite layer membranes for all-vanadium redox flow batteries. ACS Sustain Chem Eng. 2020;8(4):1998–2007. doi: 10.1021/acssuschemeng.9b06541
  • Sha Wang L, Nan Lai A, Xiao Lin C, et al. Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J Membr Sci. 2015;492:58–66. doi: 10.1016/j.memsci.2015.05.049
  • Kim M, Ha D, Choi J. Nanocellulose‐modified Nafion 212 Membrane for Improving Performance of Vanadium Redox Flow Batteries. Bull Korean Chem Soc. 2019;40(6):533–538. doi: 10.1002/bkcs.11725
  • Ibrahim A, Hossain O, Chaggar J, et al. GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. Int J Hydrogen Energy. 2020;45(8):5526–5534. doi: 10.1016/j.ijhydene.2019.05.210
  • Yu L, Lin F, Xu L, et al. A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries. RSC Adv. 2016;6(5):3756–3763. doi: 10.1039/C5RA24317C
  • Hu J, Yang Z. Layer-by-layer self-assembly preparation and desalination performance of graphene oxide membrane. Water Supply. 2022;22(1):126–136. doi: 10.2166/ws.2021.280
  • Luo X, Lau G, Tesfaye M, et al. Thickness dependence of proton-exchange-membrane properties. J Electrochem Soc. 2021;168(10):104517. doi: 10.1149/1945-7111/ac2973
  • Che X, Tang W, Dong J, et al. Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly(arylene piperidinium)s for vanadium redox flow batteries. Sci China Mater. 2021;65(3):683–694.
  • Mu T, Tang W, Shi N, et al. Novel ether-free membranes based on poly(p-terphenylene methylimidazole) for vanadium redox flow battery applications. J Membr Sci. 2022;659:120793. doi: 10.1016/j.memsci.2022.120793
  • Zhang Y, Zhang D, Luan C, et al. An economical composite membrane with high ion selectivity for vanadium flow batteries. Membranes. 2023;13(3):272–284. doi: 10.3390/membranes13030272
  • Shi L, Ying Z, Xu A, et al. Unraveling the water-mediated proton conduction mechanism along the surface of graphene oxide. Chem Mater. 2020;32(14):6062–6069. doi: 10.1021/acs.chemmater.0c01512
  • Pawar CM, Sreenath S, Bhatt B, et al. Surface modification, counter-ion exchange effect on thermally annealed sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery. Colloids Surf A Physicochem Eng Asp. 2023;667:131295. doi: 10.1016/j.colsurfa.2023.131295
  • Huang Z, Mu A, Wu L, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery. ACS Sustain Chem Eng. 2022;10(24):7786–7810. doi: 10.1021/acssuschemeng.2c01372
  • Chu F, Chu X, Lv T, et al. Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium‐functionalized polyphenylene oxide for vanadium redox flow battery applications. ChemElectrochem. 2019;6(19):5041–5050. doi: 10.1002/celc.201901367