629
Views
0
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

Engineering performance of tungsten network reinforced copper matrix composites synthesized by selective laser melting and infiltration

, , , , , & show all
Article: 2309888 | Received 27 Aug 2023, Accepted 18 Jan 2024, Published online: 13 Feb 2024

References

  • Tazegul O, Dylmishi V, Cimenoglu H. Copper matrix composite coatings produced by cold spraying process for electrical applications. Arch Civil Mech Eng. 2016;16(3):344–18. doi: 10.1016/j.acme.2016.01.005
  • Guo X, Jia L, LÜ Z, et al. Research status and development trend of particle reinforced copper matrix composites. Mater Mech Eng. 2023;47(5):109–117.
  • Sathiskumar R, Murugan N, Dinaharan I, et al. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing. Mater Charact. 2013;84:16–27. doi: 10.1016/j.matchar.2013.07.001
  • Akbarpour MR, Farvizi M, Kim HS. Microstructural and kinetic investigation on the suppression of grain growth in nanocrystalline copper by the dispersion of silicon carbide nanoparticles. Mater Design. 2017;119:311–318. doi: 10.1016/j.matdes.2017.01.077
  • Qin YQ, Tian Y, Peng YQ, et al. Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites. J Alloys Compd. 2020;848:156475. doi: 10.1016/j.jallcom.2020.156475
  • Wang L, Zheng C, Kombaiah B, et al. Contrasting roles of Laves_Cr2Nb precipitates on the creep properties of novel CuCrNbZr alloys. Mater Sci Eng A. 2020;779:139110. doi: 10.1016/j.msea.2020.139110
  • Yu C, Xiaohong Y, Xuejian L, et al. Effects of addition model and content of Zr on microstructure and properties of CuCrZr alloy. Hot Working Technol. 2017;46(15):90–93+97. doi: 10.14158/j.cnki.1001-3814.2017.15.021
  • Guohui L, Sixiang Z, Lingjian P, et al. Control of precipitates in CuCrZr alloy. Heat Treat Met. 2015;40(4):1–6. doi: 10.13251/j.issn.0254-6051.2015.04.001
  • Guo C, Zhan Z, Quan L. Study of the preparation and properties of 0.5 vol% Ni-CNTs/Cu nanocomposites with magnetic alignment. J Alloys Compd. 2019;781:261–269. doi: 10.1016/j.jallcom.2018.12.028
  • Kim KT, Cha SI, Hong SH. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng. 2007;449–451:46–50. doi: 10.1016/j.msea.2006.02.310
  • Sano N, Naito M, Kikuchi T. Enhanced field emission properties of films consisting of Fe-core carbon nanotubes prepared under magnetic field. Carbon. 2007;45(1):78–82. doi: 10.1016/j.carbon.2006.08.003
  • Bai S, Guan L, Zhang Y, et al. Enhanced tribological, electrical, and thermal properties of SiC/Cu composites by SiO2–Cu2O glass phase modification. Ceram Int. 2023;50:750–756. doi: 10.1016/j.ceramint.2023.10.153
  • Feng J, Song K, Liang S, et al. Mechanical properties and electrical conductivity of oriented-SiC-whisker-reinforced Al2O3/Cu composites. J Mater Res Technol. 2022;20:1470–1480. doi: 10.1016/j.jmrt.2022.07.131
  • Li X, Zhang M, Zhang G, et al. Effect of spark plasma sintering temperature on structure and performance characteristics of Cu-20wt%W composite. J Alloys Compd. 2022;912:165246. doi: 10.1016/j.jallcom.2022.165246
  • Li R, Chen W, Zhou K, et al. Freeze-casted tungsten skeleton reinforced copper matrix composites. J Alloys Compd. 2023;960:170859. doi: 10.1016/j.jallcom.2023.170859
  • Zhao Z, Tang F, Hou C, et al. Uncover the mystery of interfacial interactions in immiscible composites by spectroscopic microscopy: a case study with W-Cu. J Mater Sci Technol. 2022;126:106–115. doi: 10.1016/j.jmst.2022.03.014
  • Wang X, Wei S, Xu L, et al. Effect of sintering temperature on fine-grained CuW composites with high copper. Mater Charact. 2019;153:121–127. doi: 10.1016/j.matchar.2019.04.017
  • Leema N, Radha P, Vettivel SC, et al. Characterization, pore size measurement and wear model of a sintered Cu–W nano composite using radial basis functional neural network. Mater Design. 2015;68:195–206. doi: 10.1016/j.matdes.2014.11.035
  • Shi Y, Chen W, Dong L, et al. Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites. Ceram Int. 2018;44(1):57–64. doi: 10.1016/j.ceramint.2017.09.062
  • Cooke S, Ahmadi K, Willerth S, et al. Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Processes. 2020;57:978–1003. doi: 10.1016/j.jmapro.2020.07.025
  • Thijs L, Montero Sistiaga ML, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Materialia. 2013;61(12):4657–4668. doi: 10.1016/j.actamat.2013.04.036
  • Ambruş S, Muntean R, Codrean C, et al. Influence of printing conditions on the mechanical properties of copper-polylactic acid composites obtained by 3D printing fused deposition modelling. Mater Today Proc. 2023;72:580–585. doi: 10.1016/j.matpr.2022.10.061
  • Dai D, Gu D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater Design. 2014;55:482–491. doi: 10.1016/j.matdes.2013.10.006
  • Li R, Chen W, Zhou K, et al. Deformation and fracture mechanisms of selective laser melted tungsten skeleton reinforced copper matrix composites at varied temperatures. Mater Lett. 2023;332:133550. doi: 10.1016/j.matlet.2022.133550
  • Zhou K, Chen W, Yang Y, et al. Microstructure and mechanical behavior of porous tungsten skeletons synthesized by selected laser melting. Int J Refract Metals Hard Mater. 2022;103:105769. doi: 10.1016/j.ijrmhm.2021.105769
  • Tan C, Zhou K, Ma W, et al. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci Technol Adv Mater. 2018;19(1):370–380. doi: 10.1080/14686996.2018.1455154
  • Zhao Y, Jiancheng T, Ye N, et al. Microstructure and properties of WC@W-Cu composites prepared by composite electroplating. Rare Metal Mater Eng. 2021;50(4):1384–1390.
  • Zhu S, Fan JL, Liu T, et al. Electric conductivities of ultrafine W-Cu materials. Zhongguo Youse Jinshu Xuebao/Chin J Nonferrous Met. 2010;20:1360–1364.
  • Yu Y, Zhang W, Yu H. Effect of Cu content and heat treatment on the properties and microstructure of W–Cu composites produced by hot extrusion with steel cup. Adv Powder Technol. 2015;26(4):1047–1052. doi: 10.1016/j.apt.2015.04.012
  • Wang J, Li JJ, Weng GJ, et al. The effects of temperature and alignment state of nanofillers on the thermal conductivity of both metal and nonmetal based graphene nanocomposites. Acta Materialia. 2020;185:461–473. doi: 10.1016/j.actamat.2019.12.032
  • Li J, Wenge C, Wenjun T, et al. Study on W fiber reinforced W-Cu composites with high Cu content. Powder Metall Technol. 2012;30(2):125–129. doi: 10.3969/j.issn.1001-3784.2012.02.008
  • Prokhorov V, Bagramov R, Gerasimov V, et al. Copper and its alloys thermal conductivity controlling with diamond and Ti or Cr addition. Mater Today Proc. 2018;5(12):26104–26107. doi: 10.1016/j.matpr.2018.08.037
  • Varol T, Güler O, Akçay SB, et al. Enhancement of electrical and thermal conductivity of low-cost novel Cu–Ag alloys prepared by hot-pressing and electroless plating from recycled electrolytic copper powders. Mater Chem Phys. 2022;281:125892. doi: 10.1016/j.matchemphys.2022.125892
  • Duan J, Guo X, Huang T, et al. Arc ablation resistance behavior of Cu-W alloys with different W contents under atmospheric environment. Mater Today Commun. 2023;34:105173. doi: 10.1016/j.mtcomm.2022.105173
  • Lu T, Chen C, Li P, et al. Enhanced mechanical and electrical properties of in situ synthesized nano-tungsten dispersion-strengthened copper alloy. Mater Sci Eng A. 2021;799:140161. doi: 10.1016/j.msea.2020.140161
  • Lu T-X, Chen C-G, Guo Z-M, et al. Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction. Int J Miner Metall Mater. 2019;26(11):1477–1483. doi: 10.1007/s12613-019-1889-3
  • Li SJ, Xu QS, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537–4547. doi: 10.1016/j.actbio.2014.06.010
  • Zhang C, Zhu H, Hu Z, et al. A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties. Mater Sci Eng A. 2019;746:416–423. doi: 10.1016/j.msea.2019.01.024
  • Cui Q. Preparation and properties of graphite/copper composites with high thermal conductivity. Beijing: University of Science and Technology Beijing; 2021.
  • Li X, Yan F, Zhang F, et al. Effect of TipSnC mass fraction on microstructure and properties of copper matrix composites. Chin Foundry Equip Technol. 2020;55(1):12–18.
  • Gao H. Effect of heat treatment on hardness and lmpact toughness of polynary copper alloy. Phys Examination Test. 2007; 145:17–19. doi: 10.13228/j.boyuan.issn1001-0777.2007.01.005.
  • Huang Y, Zhou X, Hua N, et al. High temperature friction and wear behavior of tungsten – copper alloys. Int J Refract Metals Hard Mater. 2018;77:105–112. doi: 10.1016/j.ijrmhm.2018.08.001
  • Ravi M, Ranocchiari M, Van bokhoven JA. The direct catalytic oxidation of methane to methanol—a critical assessment. Angew Chem Int Ed. 2017;56(52):16464–16483. doi: 10.1002/anie.201702550
  • Xiao Y, Cheng Y, Shen M, et al. Friction and wear behavior of copper metal matrix composites at temperatures up to 800°C. J Mater Res Technol. 2022;19:2050–2062. doi: 10.1016/j.jmrt.2022.05.192
  • Park CW, Shin MW, Jang H. Friction-induced stick-slip intensified by corrosion of gray iron brake disc. Wear. 2014;309(1–2):89–95. doi: 10.1016/j.wear.2013.11.008
  • Zhimeng T, Zemin W, Lei X, et al. Thermal and tribological properties of MoS2 doped graphite/copper composites by microwave sintering. J Mater Res Technol. 2021;15:6001–6010. doi: 10.1016/j.jmrt.2021.11.053
  • Zhang Q, Yang J, Deng N, et al. Effect of carburized time on microstructure and properties of W Cu composites fabricated by vacuum pulse carburization. Int J Refract Metals Hard Mater. 2023;112:106168. doi: 10.1016/j.ijrmhm.2023.106168
  • Zhou YX, Xue YL, Zhou K. Failure analysis of arc ablated tungsten-copper electrical contacts. Vacuum. 2019;164:390–395. doi: 10.1016/j.vacuum.2019.03.052
  • Chen W, Xing L, Li J. Unusual arc distribution on surface and electrical breakdown mechanism of nanocrystalline tungsten copper alloy. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Mater Eng. 2007;36:463–466.
  • Ma D, Xie J, Li J, et al. Contact resistance and arc erosion of tungsten-copper contacts in direct currents. J Wuhan Univ Technol-Mater Sci Ed. 2017;32(4):816–822. doi: 10.1007/s11595-017-1674-y
  • Chen W, Shi Y, Dong L, et al. Infiltration sintering of WCu alloys from copper-coated tungsten composite powders for superior mechanical properties and arc-ablation resistance. J Alloys Compd. 2017;728:196–205. doi: 10.1016/j.jallcom.2017.08.164