670
Views
0
CrossRef citations to date
0
Altmetric
Focus On Nanoarchitectonics Reloaded: Method For Everything In Materials Science

Surface-mediated self-assembly of click-reactive cello-oligosaccharides for fabricating functional nonwoven fabrics

, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2311052 | Received 20 Dec 2023, Accepted 23 Jan 2024, Published online: 14 Feb 2024

References

  • Rao YS, Mohan NS, Shetty N, et al. Drilling and structural property study of multi-layered fiber and fabric reinforced polymer composite – a review. Mater Manuf Process. 2019;34(14):1549–13. doi: 10.1080/10426914.2019.1686522
  • Jabbour CR, Parker LA, Hutter EM, et al. Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. Nat Rev Chem. 2021;5(6):370–387. doi: 10.1038/s41570-021-00275-4
  • Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv Mater. 2021;33(19):2002640. doi: 10.1002/adma.202002640
  • Ali AE, Jeoti V, Stojanović GM. Fabric based printed-distributed battery for wearable e-textiles: a review. Sci Technol Adv Mater. 2021;22(1):772–793. doi: 10.1080/14686996.2021.1962203
  • Dong K, Peng X, Cheng R, et al. Advances in high‐performance autonomous energy and self‐powered sensing textiles with novel 3D fabric structures. Adv Mater. 2022;34(21):2109355. doi: 10.1002/adma.202109355
  • Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. Sci Technol Adv Mater. 2022;23(1):498–524. doi: 10.1080/14686996.2022.2119883
  • Vohrer U. Interfacial engineering of functional textiles for biomedical applications. In: Shishoo R, editor. Plasma technologies for textiles: a volume in woodhead publishing series in textiles. Cambridge: Woodhead Publishing Limited; 2007. p. 202–227.
  • Xiang B, Liu Q, Sun Q, et al. Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chem Commun. 2022;58(97):13413–13438. doi: 10.1039/D2CC05780H
  • Zhang M, Chu L, Chen J, et al. Asymmetric wettability fibrous membranes: preparation and biologic applications. Compos B Eng. 2024;269:111095. doi: 10.1016/j.compositesb.2023.111095
  • Wang W, Feng L, Song B, et al. Fabrication and application of superhydrophobic nonwovens: a review. Mater Today Chem. 2022;26:101227. doi: 10.1016/j.mtchem.2022.101227
  • Ren F, He R, Ren J, et al. A friendly UV-responsive fluorine-free superhydrophobic coating for oil-water separation and dye degradation. Bull Chem Soc Jpn. 2022;95(7):1091–1099. doi: 10.1246/bcsj.20220042
  • Shishoo R. Plasma technologies for textiles. Cambridge: Woodhead Publishing Limited; 2007.
  • Nemani SK, Annavarapu RK, Mohammadian B, et al. Surface modification of polymers: methods and applications. Adv Mater Interfaces. 2018;5(24):1801247. doi: 10.1002/admi.201801247
  • Kowalczyk T. Functional micro- and nanofibers obtained by nonwoven post-modification. Polymers. 2020;12(5):1087. doi: 10.3390/polym12051087
  • Yamamoto K, Asahara H, Moriguchi M, et al. Immobilization of β-cyclodextrin onto polypropylene nonwoven fabric based on photooxidative surface modification. Polym J. 2023;55(5):599–605. doi: 10.1038/s41428-022-00751-8
  • Gu J, Xiao P, Chen P, et al. Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl Mater Interfaces. 2017;9(7):5968–5973. doi: 10.1021/acsami.6b13547
  • Xiao X, Chen F, Wei Q, et al. Surface modification of polyester nonwoven fabrics by Al2O3 sol–gel coating. J Coat Technol Res. 2009;6(4):537–541. doi: 10.1007/s11998-008-9157-x
  • Shen L, Wang X, Zhang Z, et al. Design and fabrication of the evolved zeolitic imidazolate framework-modified polylactic acid nonwoven fabric for efficient oil/water separation. ACS Appl Mater Interfaces. 2021;13(12):14653–14661. doi: 10.1021/acsami.0c22090
  • Zhu C, Jiang W, Hu J, et al. Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation. ACS Appl Polym Mater. 2020;2(7):2509–2516. doi: 10.1021/acsapm.9b01197
  • Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B. 2021;9(19):3944–3966. doi: 10.1039/d1tb00339a
  • Hata Y, Serizawa T. Robust gels composed of self-assembled cello-oligosaccharide networks. Bull Chem Soc Jpn. 2021;94(9):2279–2289. doi: 10.1246/bcsj.20210234
  • Hata Y, Sawada T, Sakai T, et al. Enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically stable cellulose hydrogels for spatial immobilization of functional colloidal particles. Biomacromolecules. 2018;19(4):1269–1275. doi: 10.1021/acs.biomac.8b00092
  • Hata Y, Saito Y, Sawada T, et al. Assembly of reduced graphene oxides into a three-dimensional porous structure via confinement within robust cellulose oligomer networks. RSC Adv. 2019;9(66):38848–38854. doi: 10.1039/c9ra08318a
  • Hata Y, Sawada T, Serizawa T. Confined reduced graphene oxides as a platform for DNA sensing in solutions crowded with biomolecules. ACS Appl Bio Mater. 2020;3(5):3210–3216. doi: 10.1021/acsabm.0c00206
  • Buffiere J, Balogh-Michels Z, Borrega M, et al. The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydr Polym. 2017;178:48–56. doi: 10.1016/j.carbpol.2017.09.028
  • Yataka Y, Tanaka S, Sawada T, et al. Mechanically robust crystalline monolayer assemblies of oligosaccharide-based amphiphiles on water surfaces. Chem Commun. 2019;55(76):11346–11349. doi: 10.1039/c9cc05629g
  • Hata Y, Yoneda S, Tanaka S, et al. Structured liquids with interfacial robust assemblies of a nonionic crystalline surfactant. J Colloid Interface Sci. 2021;590:487–494. doi: 10.1016/j.jcis.2021.01.064
  • Serizawa T, Maeda T, Sawada T. Neutralization-induced self-assembly of cellulose oligomers into antibiofouling crystalline nanoribbon networks in complex mixtures. ACS Macro Lett. 2020;9(3):301–305. doi: 10.1021/acsmacrolett.9b01008
  • Serizawa T, Maeda T, Yamaguchi S, et al. Aqueous suspensions of cellulose oligomer nanoribbons for growth and natural filtration-based separation of cancer spheroids. Langmuir. 2020;36(46):13890–13898. doi: 10.1021/acs.langmuir.0c02294
  • Song J, Li Q, Miao W, et al. In situ preparation and properties of polyvinyl alcohol/synthetic ribbon-like nanocellulose composites. Int J Biol Macromol. 2024;254:127517. doi: 10.1016/j.ijbiomac.2023.127517
  • Sugiura K, Sawada T, Hata Y, et al. Distinguishing anti-PEG antibodies by specificity for the PEG terminus using nanoarchitectonics-based antibiofouling cello-oligosaccharide platforms. J Mater Chem B. 2024;12(3):650–657. doi: 10.1039/D3TB01723K
  • Serizawa T, Yamaguchi S, Sugiura K, et al. Antibacterial synthetic nanocelluloses synergizing with a metal-chelating agent. ACS Appl Bio Mater. 2024;7(1):246–255. doi: 10.1021/acsabm.3c00846
  • Hanamura M, Sawada T, Serizawa T. In-paper self-assembly of cellulose oligomers for the preparation of all-cellulose functional paper. ACS Sustainable Chem Eng. 2021;9(16):5684–5692. doi: 10.1021/acssuschemeng.1c00815
  • Hata Y, Hiruma S, Sakurai Y, et al. Nanospiked paper: microfibrous cellulose materials nanostructured via partial hydrolysis and self-assembly. Carbohydr Polym. 2023;300:120257. doi: 10.1016/j.carbpol.2022.120257
  • Sugiura K, Saito M, Sawada T, et al. Cellodextrin phosphorylase-catalyzed single-process production and superior mechanical properties of organic-inorganic hybrid hydrogels composed of surface-carboxylated synthetic nanocelluloses and hydroxyapatite. ACS Sustainable Chem Eng. 2022;10(40):13484–13494. doi: 10.1021/acssuschemeng.2c04349
  • Hishikawa Y, Togawa E, Kondo T. Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega. 2017;2(4):1469–1476. doi: 10.1021/acsomega.6b00364
  • Serizawa T, Fukaya Y, Sawada T. Self-assembly of cellulose oligomers into nanoribbon network structures based on kinetic control of enzymatic oligomerization. Langmuir. 2017;33(46):13415–13422. doi: 10.1021/acs.langmuir.7b03653
  • Yarlagadda V, Konai MM, Manjunath GB, et al. Tackling vancomycin-resistant bacteria with ‘lipophilic–vancomycin–carbohydrate conjugates’. J Antibiot. 2015;68(5):302–312. doi: 10.1038/ja.2014.144
  • Ha S, Kim KT. Effect of hydrophilic block end groups and block junction on block copolymer self-assembly in solution. RSC Adv. 2022;12(12):7446–7452. doi: 10.1039/D2RA00493C
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–994. doi: 10.1021/ie50320a024
  • Yamane C, Aoyagi T, Ago M, et al. Two different surface properties of regenerated cellulose due to structural anisotropy. Polym J. 2006;38(8):819–826. doi: 10.1295/polymj.PJ2005187
  • Miyamoto H, Umemura M, Aoyagi T, et al. Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res. 2009;344(9):1085–1094. doi: 10.1016/j.carres.2009.03.014
  • Lindman B, Medronho B, Alves L, et al. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys. 2017;19(35):23704–23718. doi: 10.1039/c7cp02409f
  • Glasser WG, Atalla RH, Blackwell J, et al. About the structure of cellulose: debating the Lindman hypothesis. Cellul. 2012;19(3):589–598. doi: 10.1007/s10570-012-9691-7
  • Nohara T, Sawada T, Tanaka H, et al. Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. J Biomater Sci Polym Ed. 2017;28(10–12):925–938. doi: 10.1080/09205063.2017.1322248
  • Wang J, Niu J, Sawada T, et al. A bottom-up synthesis of vinyl-cellulose nanosheets and their nanocomposite hydrogels with enhanced strength. Biomacromolecules. 2017;18(12):4196–4205. doi: 10.1021/acs.biomac.7b01224
  • Zhong C, Zajki-Zechmeister K, Nidetzky B. Reducing end thiol-modified nanocellulose: bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydr Polym. 2021;260:117772. doi: 10.1016/j.carbpol.2021.117772
  • Zhong C, Nidetzky B. Precision synthesis of reducing-end thiol-modified cellulose enabled by enzyme selection. Polym J. 2022;54(4):551–560. doi: 10.1038/s41428-021-00599-4
  • Fang C, Shao T, Ji X, et al. High mechanical property and antibacterial poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/functional enzymatically-synthesized cellulose biodegradable composite. Int J Biol Macromol. 2023;225:776–785. doi: 10.1016/j.ijbiomac.2022.11.140
  • Nohara T, Sawada T, Tanaka H, et al. Enzymatic synthesis of oligo(ethylene glycol)-bearing cellulose oligomers for in situ formation of hydrogels with crystalline nanoribbon network structures. Langmuir. 2016;32(47):12520–12526. doi: 10.1021/acs.langmuir.6b01635
  • Yataka Y, Sawada T, Serizawa T. Multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. Langmuir. 2016;32(39):10120–10125. doi: 10.1021/acs.langmuir.6b02679
  • Ariga K, Fakhrullin R. Materials nanoarchitectonics from atom to living cell: a method for everything. Bull Chem Soc Jpn. 2022;95(5):774–795. doi: 10.1246/bcsj.20220071
  • Liang J, Ouyang X, Cao Y. Interfacial and confined molecular-assembly of poly(3-hexylthiophene) and its application in organic electronic devices. Sci Technol Adv Mater. 2022;23(1):619–632. doi: 10.1080/14686996.2022.2125826
  • Hu W, Shi J, Lv W, et al. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Sci Technol Adv Mater. 2022;23(1):393–412. doi: 10.1080/14686996.2022.2082260
  • Shen X, Song J, Sevencan C, et al. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Sci Technol Adv Mater. 2022;23(1):199–224. doi: 10.1080/14686996.2022.2054666
  • Yamamoto Y, Kushida S, Okada D, et al. Self-assembled π-conjugated organic/polymeric microresonators and microlasers. Bull Chem Soc Jpn. 2023;96(7):702–710. doi: 10.1246/bcsj.20230104
  • Roy B, Govindaraju T. Enzyme-mimetic catalyst architectures: the role of second coordination sphere in catalytic activity. Bull Chem Soc Jpn. 2023. doi: 10.1246/bcsj.20230224
  • Murai K. Development of peptide–inorganic hybrid materials based on biomineralization and their functional design based on structural controls. Polym J. 2023;55(8):817–827. doi: 10.1038/s41428-023-00783-8