1,832
Views
0
CrossRef citations to date
0
Altmetric
Optical, Magnetic and Electronic Device Materials

Fully printed non-contact touch sensors based on GCN/PDMS composites: enabling over-the-bottom detection, 3D recognition, and wireless transmission

, , , , , , , & show all
Article: 2311635 | Received 14 Sep 2023, Accepted 24 Jan 2024, Published online: 14 Feb 2024

References

  • Cui XH, Chen JW, Wu W, et al. Flexible and breathable all-nanofiber iontronic pressure sensors with ultraviolet shielding and antibacterial performances for wearable electronics. Nano Energy. 2022;95:107022. doi: 10.1016/j.nanoen.2022.107022
  • Tay RY, Li HL, Lin JJ, et al. Lightweight, superelastic boron nitride/polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications. Adv Funct Mater. 2020;30(10):1909604. doi: 10.1002/adfm.201909604
  • He YX, Zhou MY, Mahmoud MHH, et al. Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv Compos Hybrid Mater. 2022;5(3):1939–15. doi: 10.1007/s42114-022-00525-z
  • Chen BD, Zhang L, Li HQ, et al. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J Colloid Interface Sci. 2022;617:478–488. doi: 10.1016/j.jcis.2022.03.013
  • Tao K, Chen ZS, Yu JH, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv Sci. 2022;9(10):2104168. doi: 10.1002/advs.202104168
  • Gao YJ, Yu LT, Yeo JC, et al. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater. 2020;32(15):1902133. doi: 10.1002/adma.201902133
  • Meng KY, Xiao X, Wei WX, et al. Wearable pressure sensors for pulse wave monitoring. Adv Mater. 2022;34(21):2109357. doi: 10.1002/adma.202109357
  • Yang J, Luo S, Zhou X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces. 2019;11(16):14997–15006. doi: 10.1021/acsami.9b02049
  • Xiong YX, Shen YK, Tian L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy. 2020;70:104436. doi: 10.1016/j.nanoen.2019.104436
  • Ma YA, Cheng YF, Wang J, et al. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat. 2022;4(9):e12328. doi: 10.1002/inf2.12328
  • Wang LR, Xu TL, Zhang XJ. Multifunctional conductive hydrogel-based flexible wearable sensors. TRAC-Trends Anal Chem. 2021;134:116130. doi: 10.1016/j.trac.2020.116130
  • Wei HG, Li A, Kong DS, et al. Polypyrrole/Reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater. 2021;4(1):86–95. doi: 10.1007/s42114-020-00201-0
  • Chen LR, Chang XH, Wang H, et al. Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy. 2022;96:107077. doi: 10.1016/j.nanoen.2022.107077
  • Zheng YJ, Yin R, Zhao Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J. 2021;420:127720. doi: 10.1016/j.cej.2020.127720
  • Cai YW, Zhang XN, Wang GG, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy. 2021;81:105663. doi: 10.1016/j.nanoen.2020.105663
  • Yang M, Cheng YF, Yue Y, et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv Sci. 2022;9(20):2200507. doi: 10.1002/advs.202200507
  • Cui Z, Han YW, Huang QJ, et al. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale. 2018;10(15):6806–6811. doi: 10.1039/C7NR09570H
  • Huang QJ, Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications. Adv Mater Technol. 2019;4(5):1800546. doi: 10.1002/admt.201800546
  • Li HP, Liang JJ. Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv Mater. 2020;32(3):1805864. doi: 10.1002/adma.201805864
  • Oliveros‐Mata ES, Voigt C, Cañón Bermúdez GS, et al. Dispenser printed Bismuth‐based Magnetic Field sensors with Non‐Saturating large magnetoresistance for touchless interactive surfaces. Adv Mater Technol. 2022;7(10):2200227. doi: 10.1002/admt.202200227
  • Ogbeide O, Bae G, Yu W, et al. Inkjet‐printed rGo/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv Funct Mater. 2022;32(25):2113348. doi: 10.1002/adfm.202113348
  • Ma H, Li J, Zhou J, et al. Screen-printed carbon black/recycled Sericin@ Fabrics for wearable sensors to monitor sweat loss. ACS Appl Mater Interfaces. 2022;14(9):11813–11819. doi: 10.1021/acsami.1c23341
  • Hwang J, Kim Y, Yang H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Composites Part B. 2021;211:108607. doi: 10.1016/j.compositesb.2021.108607
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58. doi: 10.1038/354056a0
  • Li H, Chang SL, Li M, et al. Flexible and stable carbon nanotube film strain sensors with self-derived integrated electrodes. ACS Appl Mater Interfaces. 2021;13(46):55600–55610. doi: 10.1021/acsami.1c13530
  • Kang M, Kim J, Jang B, et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano. 2017;11(8):7950–7957. doi: 10.1021/acsnano.7b02474
  • Jiang C, Ren H, Ye X, et al. Object detection from UAV thermal infrared images and videos using YOLO models. Int J App Earth Observation Geoinfo. 2022;112:102912. doi: 10.1016/j.jag.2022.102912
  • Kubelick KP, Mehrmohammadi M. Magnetic particles in motion: magneto-motive imaging and sensing. Theranostics. 2022;12(4):1783–1799. doi: 10.7150/thno.54056
  • Li SE, Li GF, Yu JY, et al. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles. Mech Syst Signal Process. 2018;98:173–189. doi: 10.1016/j.ymssp.2017.04.041
  • Li YK, Zhou XW, Chen JL, et al. Laser-patterned copper electrodes for proximity and tactile sensors. Adv Mater Interfaces. 2020;7(4):1901845. doi: 10.1002/admi.201901845
  • Wang Q, Ding HY, Hu XS, et al. A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition. Mater Horiz. 2020;7(10):2673–2682. doi: 10.1039/D0MH00862A
  • Zheng YN, Yu Z, Mao GY, et al. A wearable capacitive sensor based on ring/disk-shaped electrode and porous dielectric for noncontact healthcare monitoring. Glob Chall. 2020;4(5):1900079. doi: 10.1002/gch2.201900079
  • Alaghmandfard A, Ghandi K. A comprehensive review of Graphitic Carbon Nitride (g-C3N4)-metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials. 2022;12(2):294. doi: 10.3390/nano12020294
  • Picu RC, Rakshit A. Dynamics of free chains in polymer nanocomposites. J Chem Phys. 2007;126(14):144909. doi: 10.1063/1.2719196
  • Wang JL, Wang SZ. A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coord Chem Rev. 2022;453:214338. doi: 10.1016/j.ccr.2021.214338
  • Fu YJ, Qui HZ, Liao KS, et al. Effect of UV-Ozone treatment on Poly(dimethylsiloxane) membranes: surface characterization and gas separation performance. Langmuir. 2010;26(6):4392–4399. doi: 10.1021/la903445x
  • Singha S, Thomas MJ. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Trans Dielectr Electr Insul. 2008;15(1):2–11. doi: 10.1109/T-DEI.2008.4446731
  • Singha S, Thomas MJ. Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans Dielectr Electr Insul. 2009;16(2):531–542. doi: 10.1109/TDEI.2009.4815189
  • Chen X, Zhang Z, Yu SB, et al. Fringing effect analysis of parallel plate capacitors for capacitive power transfer application. In: 4th IEEE International Future Energy Electronics Conference (IFEEC); 2019 Nov 24-28; Singapore; 2019.
  • Huang JR, Wang HT, Li JA, et al. High-performance flexible capacitive proximity and pressure sensors with spiral electrodes for continuous human–machine interaction. ACS Mater Lett. 2022;4(11):2261–2272. doi: 10.1021/acsmaterialslett.2c00860