367
Views
0
CrossRef citations to date
0
Altmetric
Optical, Magnetic and Electronic Device Materials

Hydrogen-triggered metal filament rupture in Cu-based resistance switches

, , , &
Article: 2318213 | Received 22 Sep 2023, Accepted 08 Feb 2024, Published online: 26 Feb 2024

References

  • Xu XX, Luo Q, Gong TC, et al. Resistive switching memory for high density storage and computing. Chinese Phys B. 2021;30(5):058702. doi: 10.1088/1674-1056/abe0c4
  • Rao MY, Tang H, Wu JB, et al. Thousands of conductance levels in memristors integrated on CMOS. Nature. 2023;615:823–10. doi: 10.1038/s41586-023-05759-5
  • Terabe K, Tsuchiya T, Tsuruoka T. A variety of functional devices realized by ionic nanoarchitectonics, complementing electronics components. Adv Electron Mater. 2022;8(8):2100645. doi: 10.1002/aelm.202100645
  • Asif M, Kumar A. Resistive switching in emerging materials and their characteristics for neuromorphic computing. Mater Today Electron. 2022;1:100004. doi: 10.1016/j.mtelec.2022.100004
  • Valov L, Tsuruoka T. Effect of moisture and redox reactions in VCM and ECM resistive switching memories. J Phys D Appl Phys. 2018;51(41):413001. doi: 10.1088/1361-6463/aad581
  • Leonetti G, Fretto M, Pirri FC, et al. Effect of electrode materials on resistive switching behavior of NbOx-based memristive devices. Sci Rep. 2023;13:17003. doi: 10.1038/s41598-023-44110-w
  • Athena FF, West MP, Hah J, et al. Trade-off between gradual set and on/off ratio in HfOx-based analog memory with a thin SiOx barrier layer. ACS Appl Electron Mater. 2023;5(6):3048. doi: 10.1021/acsaelm.3c00131
  • Basnet P, Anderson EC, Athena FF, et al. Asymmetric resistive switching of bilayer HfOx/AlOy and AlOy/HfOx memristors: the oxide layer characteristics and performance optimization for digital set and analog reset switching. ACS Appl Electron Mater. 2023;5:1859‒1865. doi: 10.1021/acsaelm.3c00079
  • Wang ZR, Wu HQ, Burr GW, et al. Resistive switching materials for information processing. Nat Rev Mater. 2020;5:173‒195. doi: 10.1038/s41578-019-0159-3
  • Kamble GU, Patil AP, Kamat RK, et al. Promising materials and synthesis methods for resistive switching memory devices: a status review. ACS Appl Electron Mater. 2023;5(5):2454‒2481. doi: 10.1021/acsaelm.3c00062
  • Wedig A, Luebben M, Cho DY, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotech. 2016;11:67‒74. doi: 10.1038/nnano.2015.221
  • Patil AR, Dongale TD, Kamat RK, et al. Binary metal oxide-based resistive switching memory devices: a status review. Mater Today Commun. 2023;34:105356. doi: 10.1016/j.mtcomm.2023.105356
  • Tsuruoka T, Terabe K, Hasegawa T, et al. Temperature effects on the switching kinetics of a Cu‒Ta2O5‒based atomic switch. Nanotechnology. 2011;22(25):254013. doi: 10.1088/0957-4484/22/25/254013
  • Wang W, Wang M, Ambrosi E, et al. Surface diffusion‒limited lifetime of silver and copper nanofilament in resistive switching devices. Nat Commun. 2019;10:81. doi: 10.1038/s41467-018-07979-0
  • Gao S, Song C, Chen C, et al. Dynamic processes of resistive switching in metallic filament‒based organic memory devices. J Phys Chem C. 2012;116(33):17955‒17959. doi: 10.1021/jp305482c
  • Liu Q, Sun J, Lv HB, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater. 2012;24(14):1844‒1849. doi: 10.1002/adma.201104104
  • Xiao B, Watanabe S. Interface structure in Cu/Ta2O5/Pt resistance switch: a first‒principles study. ACS Appl Mater Interfaces. 2015;7(1):519‒525. doi: 10.1021/am5066656
  • Xiao B, Watanabe S. Moisture effect on the diffusion of Cu Ions in Cu/Ta2O5/Pt and Cu/SiO2/Pt resistance switches: a first‒principles study. Sci Technol Adv Mater. 2019;20(1):580‒588. doi: 10.1080/14686996.2019.1616222
  • Xiao B, Yu XF, Watanabe S. A comparative study on the diffusion behaviors of metal and oxygen ions in metal oxide-based resistance switches via ab initio molecular dynamics simulations. ACS Appl Electron Mater. 2019;1:585‒594. doi: 10.1021/acsaelm.9b00049
  • Xiao B, Gu TK, Tada T, et al. Conduction paths in Cu/Amorphous‒Ta2O5/Pt atomic switch: first‒principles studies. J Appl Phys. 2014;115:034503. doi: 10.1063/1.4861724
  • Tsuruoka T, Terabe K, Hasegawa T, et al. Effect of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv Funct Mater. 2012;22:70‒77. doi: 10.1002/adfm.201101846
  • Ren J, Meng S. First‒principle study of water on copper and noble metal (110) surface. Phys Rev B. 2008;77:054110. doi: 10.1103/PhysRevB.77.054110
  • Zhou HB, Zhang Y, Ou X. Dissolution and diffusion behaviors of hydrogen in copper: a first‒principles investigation. Comput Mater Sci. 2013;79:923‒928. doi: 10.1016/j.commatsci.2013.08.002
  • Liu KQ, Qin L, Zhang XX, et al. Interfacial redox processes in memristive devices based on valence change and electrochemical metallization. Faraday Discuss. 2019;213:41‒52. doi: 10.1039/C8FD00113H
  • Tsuruoka T, Valov I, Mannequin C, et al. Humidy effects on the redox reactions and ionic transport in a Cu/Ta2O5/Pt atomic switch structure. Jpn J Appl Phys. 2016;55:06GJ09. doi: 10.7567/JJAP.55.06GJ09
  • Campari A, Ustolin F, Alvaro A, et al. A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies. Int J Hydrogen Energy. 2023;48(90):35316‒35346. doi: 10.1016/j.ijhydene.2023.05.293
  • Yin S, Cheng GM, Richter G, et al. Hydrogen Embrittlement in Metallic Nanowires. Nat Commum. 2019;10:2004. doi: 10.1038/s41467-019-10035-0
  • Zhang ZS, Wei ZY, Sautet P, et al. Hydrogen-induced restructuring of a Cu(100) electrode in electroreduction conditions. J Am Chem Soc. 2022;144(42):19284–19293. doi: 10.1021/jacs.2c06188
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Dong LS, Wang SZ, Wu GL, et al. Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. Int J Hydrogen Energy. 2022;47(46):20288–20309. doi: 10.1016/j.ijhydene.2022.04.119
  • Molavitabrizi D, Yu HY, Mousavi SM. Hydrogen embrittlement in micro-architectured materials. Eng Fract Mech. 2022;274:108762. doi: 10.1016/j.engfracmech.2022.108762
  • Polyanskiy VA, Belyaev AK, Sedova YS, et al. Mesoeffect of the dual mechanism of hydrogen-induced cracking. Phys Mesomech. 2022;25(5):466‒478. doi:10.1134/S1029959922050095
  • Tsuruoka T, Terabe K, Hasegawa T, et al. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology. 2010;21(42):425205. doi: 10.1088/0957-4484/21/42/425205
  • Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113(22):9901‒9904. doi: 10.1063/1.1329672
  • He XF, Zhu YZ, Epstein A, et al. Statistical variances of diffusional properties from Ab initio molecular dynamics simulations. Npj Comput Mater. 2018;4:18. doi: 10.1038/s41524-018-0074-y
  • Fajín JL, Cordeiro MND, Illas F, et al. Descriptors controlling the catalytic activity of metallic surfaces toward water splitting. J Catal. 2010;276:92–100. doi: 10.1016/j.jcat.2010.09.007