1,097
Views
0
CrossRef citations to date
0
Altmetric
Focus On Nanoarchitectonics Reloaded: Method For Everything In Materials Science

Biofabrication of engineered blood vessels for biomedical applications

, , , , &
Article: 2330339 | Received 12 Dec 2023, Accepted 10 Mar 2024, Published online: 16 Apr 2024

References

  • Schöneberg J, De Lorenzi F, Theek B, et al. Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique. Sci Rep. 2018;8(1):10430. doi: 10.1038/s41598-018-28715-0
  • Tu TY, Chao PCP. Continuous blood pressure measurement based on a neural network scheme applied with a cuffless sensor. Microsyst Technol. 2018;24(11):4539–27. doi: 10.1007/s00542-018-3957-4
  • Bondareva O, Sheikh BN. Vascular homeostasis and inflammation in health and disease—lessons from single cell technologies. Int J Mol Sci. 2020;21(13):1–21. doi: 10.3390/ijms21134688
  • Xie R, Zheng W, Guan L, et al. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small. 2020;16(15):1902838. doi: 10.1002/smll.201902838
  • Dellaquila A, Le Bao C, Letourneur D, et al. In vitro strategies to vascularize 3D physiologically relevant models. Adv Sci. 2021;8(19):2100798. doi: 10.1002/advs.202100798
  • Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater. 2020;30(37):1910811. doi: 10.1002/adfm.201910811
  • Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. Nat Rev Mater. 2019;4(5):294–311. doi: 10.1038/s41578-019-0099-y
  • Wang Y, Kankala RK, Ou C, et al. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater. 2022;9:198–220. doi: 10.1016/j.bioactmat.2021.07.005
  • Hoch E, Tovar GEM, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg. 2014;46(5):767–778. doi: 10.1093/ejcts/ezu242
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science (1979). 1986;231:397–400. doi: 10.1126/science.2934816
  • Langer R, Vacanti JP. Tissue engineering. Science (1979). 1993;260:920–926. doi: 10.1126/science.8493529
  • Blache U, Ehrbar M. Inspired by nature: hydrogels as versatile tools for vascular engineering. Adv Wound Care (New Rochelle). 2018;7:232–246. doi: 10.1089/wound.2017.0760
  • Liu H, Kitano S, Irie S, et al. Collagen microfibers induce blood capillary orientation and open vascular Lumen. Adv Biosyst. 2020;4(5):2000038. doi: 10.1002/adbi.202000038
  • McCoy MG, Wei JM, Choi S, et al. Collagen fiber orientation regulates 3D vascular network formation and alignment. ACS Biomater Sci Eng. 2018;4(8):2967–2976. doi: 10.1021/acsbiomaterials.8b00384
  • Zhao H, Wang Z, Jiang S, et al. Microfluidic synthesis of injectable angiogenic microgels. Cell Rep Phys Sci. 2020;1(5):1. doi: 10.1016/j.xcrp.2020.100047
  • Minor AJ, Coulombe KLK. Engineering a collagen matrix for cell-instructive regenerative angiogenesis. J Biomed Mater Res B Appl Biomater. 2020;108(6):2407–2416. doi: 10.1002/jbm.b.34573
  • Alekseeva T, Unger RE, Brochhausen C, et al. Engineering a microvascular capillary bed in a tissue-like collagen construct. Tissue Eng Part A. 2014;20(19–20):2656–2665. doi: 10.1089/ten.tea.2013.0570
  • Annabi N, Mithieux SM, Zorlutuna P, et al. Engineered cell-laden human protein-based elastomer. Biomaterials. 2013;34(22):5496–5505. doi: 10.1016/j.biomaterials.2013.03.076
  • Lee S, Sani ES, Spencer AR, et al. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv Mater. 2020;32(45):2003915. doi: 10.1002/adma.202003915
  • Annabi N, Mithieux SM, Boughton EA, et al. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials. 2009;30(27):4550–4557. doi: 10.1016/j.biomaterials.2009.05.014
  • Annabi N, Fathi A, Mithieux SM, et al. The effect of elastin on chondrocyte adhesion and proliferation on poly (ɛ-caprolactone)/elastin composites. Biomaterials. 2011;32(6):1517–1525. doi: 10.1016/j.biomaterials.2010.10.024
  • Shaikh FM, Callanan A, Kavanagh EG, et al. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs. 2008;188(4):333–346. doi: 10.1159/000139772
  • Aper T, Schmidt A, Duchrow M, et al. Autologous blood vessels engineered from peripheral blood sample. Eur J Vasc Endovascular Surg. 2007;33(1):33–39. doi: 10.1016/j.ejvs.2006.08.008
  • Ye Q, Ènd GZ, Benedikt P, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17:587–591. doi: 10.1016/S1010-7940(00)00373-0
  • Jockenhoevel S, Zund G, Hoerstrup SP, et al. Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2001;19:424–430. doi: 10.1016/S1010-7940(01)00624-8
  • Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007;28(1):55–65. doi: 10.1016/j.biomaterials.2006.08.027
  • Aper T, Teebken OE, Steinhoff G, et al. Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovascular Surg. 2004;28(3):296–302. doi: 10.1016/j.ejvs.2004.05.016
  • Mol A, Van Lieshout MI, Dam-De Veen CG, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005;26(16):3113–3121. doi: 10.1016/j.biomaterials.2004.08.007
  • Wozniak G. Fibrin sealants in supporting surgical techniques: the importance of individual components. Cardiovasc Surg. 2003;11:17–21. doi: 10.1016/S0967-2109(03)00067-X
  • Liu J, Long H, Zeuschner D, et al. Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting. Nat Commun. 2021;12(1):3402. doi: 10.1038/s41467-021-23644-5
  • Hall ML, Givens S, Santosh N, et al. Laminin 411 mediates endothelial specification via multiple signaling axes that converge on β-catenin. Stem Cell Rep. 2022;17(3):569–583. doi: 10.1016/j.stemcr.2022.01.005
  • Ali S, Saik JE, Gould DJ, et al. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Biores Open Access. 2013;2(4):241–249. doi: 10.1089/biores.2013.0021
  • Stamati K, Priestley JV, Mudera V, et al. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake. Exp Cell Res. 2014;327:68–77. doi: 10.1016/j.yexcr.2014.05.012
  • Im GB, Lin RZ. Bioengineering for vascularization: trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Front Bioeng Biotechnol. 2022;10:1053491. doi: 10.3389/fbioe.2022.1053491
  • Lee VK, Kim DY, Ngo H, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials. 2014;35(28):8092–8102. doi: 10.1016/j.biomaterials.2014.05.083
  • Harding S, Afoke A, Brown R, et al. Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds for use in tissue engineered blood vessels. Bioprocess Biosyst Eng. 2002;25:53–59. doi: 10.1007/s004490100268
  • Iuliano DJ, Saavedra SS, Truskey GA. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J Biomed Mater Res. 1993;27(8):1103–1113. doi: 10.1002/jbm.820270816
  • Benoit DSW, Anseth KS. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials. 2005;26(25):5209–5220. doi: 10.1016/j.biomaterials.2005.01.045
  • Pezzoli D, Di Paolo J, Kumra H, et al. Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds. Biomaterials. 2018;180:130–142. doi: 10.1016/j.biomaterials.2018.07.013
  • Silva LPD, Pirraco RP, Santos TC, et al. Neovascularization induced by the hyaluronic acid-based spongy-like hydrogels degradation products. ACS Appl Mater Interfaces. 2016;8(49):33464–33474. doi: 10.1021/acsami.6b11684
  • Jia W, Liu L, Li M, et al. Construction of enzyme-laden vascular scaffolds based on hyaluronic acid oligosaccharides-modified collagen nanofibers for antithrombosis and in-situ endothelialization of tissue-engineered blood vessels. Acta Biomater. 2022;153:287–298. doi: 10.1016/j.actbio.2022.09.041
  • Kang L, Jia W, Li M, et al. Hyaluronic acid oligosaccharide-modified collagen nanofibers as vascular tissue-engineered scaffold for promoting endothelial cell proliferation. Carbohydr Polym. 2019;223:115106. doi: 10.1016/j.carbpol.2019.115106
  • Kenar H, Ozdogan CY, Dumlu C, et al. Microfibrous scaffolds from poly(L-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Mater Sci Eng C. 2019;97:31–44. doi: 10.1016/j.msec.2018.12.011
  • Khetan S, Burdick JA. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials. 2010;31(32):8228–8234. doi: 10.1016/j.biomaterials.2010.07.035
  • Isik M, Karakaya E, Arslan TS, et al. 3D printing of extracellular matrix-based multicomponent, all-natural, highly elastic, and functional materials toward vascular tissue engineering. Adv Healthc Mater. 2023;12(20):12. doi: 10.1002/adhm.202203044
  • Duan Y, Li X, Zuo X, et al. Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages. J Mater Chem B. 2019;7(36):5478–5489. doi: 10.1039/C9TB01126A
  • Choi JR, Yong KW, Choi JY, et al. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques. 2019;66(1):40–53. doi: 10.2144/btn-2018-0083
  • Chuang TW, Masters KS. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides. Biomaterials. 2009;30(29):5341–5351. doi: 10.1016/j.biomaterials.2009.06.029
  • Loebel C, D’Este M, Alini M, et al. Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation. Carbohydr Polym. 2015;115:325–333. doi: 10.1016/j.carbpol.2014.08.097
  • Maleki S, Shamloo A, Kalantarnia F. Tubular TPU/SF nanofibers covered with chitosan-based hydrogels as small-diameter vascular grafts with enhanced mechanical properties. Sci Rep. 2022;12(1):6179. doi: 10.1038/s41598-022-10264-2
  • Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials. 2009;30(11):2122–2131. doi: 10.1016/j.biomaterials.2008.12.057
  • Aslani S, Kabiri M, HosseinZadeh S, et al. The applications of heparin in vascular tissue engineering. Microvasc Res. 2020;131:104027. doi: 10.1016/j.mvr.2020.104027
  • Fernández-Muiños T, Recha-Sancho L, López-Chicón P, et al. Bimolecular based heparin and self-assembling hydrogel for tissue engineering applications. Acta Biomater. 2015;16:35–48. doi: 10.1016/j.actbio.2015.01.008
  • Larsen BE, Bjørnstad J, Pettersen EO, et al. Rheological characterization of an injectable alginate gel system. BMC Biotechnol. 2015;15(1):29. doi: 10.1186/s12896-015-0147-7
  • Nemati S, Rezabakhsh A, Khoshfetrat AB, et al. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol Bioeng. 2017;114(12):2920–2930. doi: 10.1002/bit.26395
  • Miri AK, Khalilpour A, Cecen B, et al. Multiscale bioprinting of vascularized models. Biomaterials. 2019;198:204–216. doi: 10.1016/j.biomaterials.2018.08.006
  • Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323–4331. doi: 10.1016/j.actbio.2014.06.034
  • Barrs RW, Jia J, Ward M, et al. Engineering a chemically defined hydrogel bioink for direct bioprinting of microvasculature. Biomacromolecules. 2021;22(2):275–288. doi: 10.1021/acs.biomac.0c00947
  • Wang XY, Jin ZH, Gan BW, et al. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab Chip. 2014;14(15):2709–2716. doi: 10.1039/C4LC00069B
  • Lei X, Wu Y, Peng X, et al. Research on alginate-polyacrylamide enhanced amnion hydrogel, a potential vascular substitute material. Mater Sci Eng C. 2020;115:115. doi: 10.1016/j.msec.2020.111145
  • Wei X, Chen S, Xie T, et al. An MMP-degradable and conductive hydrogel to stabilize HIF-1α for recovering cardiac functions. Theranostics. 2022;27:127–142. doi: 10.7150/thno.63481
  • Wang Q, Wang X, Feng Y. Chitosan hydrogel as tissue engineering scaffolds for vascular regeneration applications. Gels. 2023;9(5):373. doi: 10.3390/gels9050373
  • Ahmadi R, Burns AJ, De Bruijn JD. Chitosan-based hydrogels do not induce angiogenesis. J Tissue Eng Regen Med. 2010;4:309–315. doi: 10.1002/term.247
  • Hsieh FY, Tao L, Wei Y, et al. A novel biodegradable self-healing hydrogel to induce blood capillary formation. NPG Asia Mater. 2017;9(3):e363. doi: 10.1038/am.2017.23
  • Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int J Biol Macromol. 2017;104:1003–1011. doi: 10.1016/j.ijbiomac.2017.06.124
  • Jiang M, Pan Y, Liu Y, et al. Effect of sulfated chitosan hydrogel on vascularization and osteogenesis. Carbohydr Polym. 2022;281:119059. doi: 10.1016/j.carbpol.2021.119059
  • Lord MS, Tsoi BM, Farrugia BL, et al. Synthesis and characterization of water soluble biomimetic chitosans for bone and cartilage tissue regeneration. J Mater Chem B. 2014;20:6517–6526. doi: 10.1039/C4TB00531G
  • Tang H, Zhang P, Kieft TL, et al. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater. 2010;6(7):2562–2571. doi: 10.1016/j.actbio.2010.01.002
  • Otsuji TG, Bin J, Yoshimura A, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep. 2014;2(5):734–745. doi: 10.1016/j.stemcr.2014.03.012
  • Grasdalen H, Smidsrod O. Gelation of Gellan Gum. Carbohydr Polym. 1987;7(5):371–393. doi: 10.1016/0144-8617(87)90004-X
  • Matsusaki M, Ikeguchi H, Kubo C, et al. Fabrication of perfusable pseudo blood vessels by controlling sol-gel transition of gellan gum templates. ACS Biomater Sci Eng. 2019;5:5637–5643. doi: 10.1021/acsbiomaterials.8b01272
  • Perugini V, Guildford AL, Silva-Correia J, et al. Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. J Tissue Eng Regen Med. 2018;12(2):e669–e678. doi: 10.1002/term.2340
  • Gering C, Párraga J, Vuorenpää H, et al. Bioactivated gellan gum hydrogels affect cellular rearrangement and cell response in vascular co-culture and subcutaneous implant models. Biomater Sci. 2022;143:143. doi: 10.1016/j.bioadv.2022.213185
  • Kim BS, Das S, Jang J, et al. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev. 2020;120(19):10608–10661. doi: 10.1021/acs.chemrev.9b00808
  • Gao G, Park JY, Kim BS, et al. Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology. Adv Healthc Mater. 2018;7(23). doi: 10.1002/adhm.201801102
  • Gao G, Lee JH, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Adv Funct Mater. 2017;27(33):27. doi: 10.1002/adfm.201700798
  • Zhang Y, Kumar P, Lv S, et al. Recent advances in 3D bioprinting of vascularized tissues. Mater Des. 2021;199:109398. doi: 10.1016/j.matdes.2020.109398
  • Hann SY, Cui H, Esworthy T, et al. Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater. 2021;123:263–274. doi: 10.1016/j.actbio.2021.01.012
  • Munoz-Pinto DJ, Jimenez-Vergara AC, Gharat TP, et al. Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials. 2015;40:32–42. doi: 10.1016/j.biomaterials.2014.10.051
  • Yang X, Li S, Sun X, et al. Swelling compensation of engineered vasculature fabricated by additive manufacturing and sacrifice-based technique using thermoresponsive hydrogel. Int J Bioprint. 2023;9(5):749. doi: 10.18063/ijb.749
  • Suntornnond R, Tan EYS, An J, et al. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures. Sci Rep. 2017;7(1). doi: 10.1038/s41598-017-17198-0
  • Wang X, Mao H, Xiang Y, et al. Preliminary study on acrylated Pluronic F127-based hydrogels as artificial blood vessel materials. J Mater Sci. 2022;57(37):17735–17750. doi: 10.1007/s10853-022-07718-3
  • Dai X, Zhang Y, Gao L, et al. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater. 2015;27(23):3566–3571. doi: 10.1002/adma.201500534
  • Gao F, Xu Z, Liang Q, et al. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater. 2018;28(13):1706644. doi: 10.1002/adfm.201706644
  • Liang Q, Gao F, Zeng Z, et al. Coaxial scale-up printing of diameter-tunable biohybrid hydrogel microtubes with high strength, perfusability, and endothelialization. Adv Funct Mater. 2020;30(43):2001485. doi: 10.1002/adfm.202001485
  • Lopes SV, Collins MN, Reis RL, et al. Vascularization approaches in tissue engineering: recent developments on evaluation tests and modulation. ACS Appl Bio Mater. 2021;4:2941–2956. doi: 10.1021/acsabm.1c00051
  • Fukunishi T, Lui C, Ong CS, et al. Extruded poly (glycerol sebacate) and polyglycolic acid vascular graft forms a neoartery. J Tissue Eng Regen Med. 2022;16(4):346–354. doi: 10.1002/term.3282
  • Leal BBJ, Wakabayashi N, Oyama K, et al. Vascular tissue engineering: polymers and methodologies for small caliber vascular grafts. Front Cardiovasc Med. 2021;7. doi: 10.3389/fcvm.2020.592361
  • Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science (1979). 1999;284:489–493. doi: 10.1126/science.284.5413.489
  • Naito Y, Shinoka T, Duncan D, et al. Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev. 2011;63(4–5):312–323. doi: 10.1016/j.addr.2011.03.001
  • Hajiali H, Shahgasempour S, Naimi-Jamal MR, et al. Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomedicine. 2011;6:2133–2141. doi: 10.2147/IJN.S24312
  • Li MX, Wei QQ, Mo HL, et al. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res. 2023;27(1):58. doi: 10.1186/s40824-023-00399-2
  • Gugutkov D, Gustavsson J, Cantini M, et al. Electrospun fibrinogen–PLA nanofibres for vascular tissue engineering. J Tissue Eng Regen Med. 2017;11:2774–2784. doi: 10.1002/term.2172
  • Bertlein S, Hikimoto D, Hochleitner G, et al. Development of endothelial cell networks in 3D tissues by combination of melt electrospinning writing with cell-accumulation technology. Small. 2018;14(2):14. doi: 10.1002/smll.201701521
  • Coimbra P, Santos P, Alves P, et al. Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids Surf B Biointerfaces. 2017;159:7–15. doi: 10.1016/j.colsurfb.2017.07.065
  • Fang Z, Xiao Y, Geng X, et al. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model. Biomater Sci. 2022;133:112628. doi: 10.1016/j.msec.2021.112628
  • Almasi-Jaf A, Shamloo A, Shaygani H, et al. Fabrication of heparinized bi-layered vascular graft with PCL/PU/gelatin co-electrospun and chitosan/silk fibroin/gelatin freeze-dried hydrogel for improved endothelialization and enhanced mechanical properties. Int J Biol Macromol. 2023;253:126807. doi: 10.1016/j.ijbiomac.2023.126807
  • Yu C, Guan G, Glas S, et al. A biomimetic basement membrane consisted of hybrid aligned nanofibers and microfibers with immobilized collagen IV and laminin for rapid endothelialization. Biodes Manuf. 2021;4:171–189. doi: 10.1007/s42242-020-00111-6
  • Yang GH, Kang D, An SH, et al. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res. 2022;26(1):73. doi: 10.1186/s40824-022-00321-2
  • Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity Bioink. Adv Mater. 2016;28(4):677–684. doi: 10.1002/adma.201503310
  • Singh RK, Seliktar D, Putnam AJ. Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials. 2013;34(37):9331–9340. doi: 10.1016/j.biomaterials.2013.08.016
  • Jiang B, Waller TM, Larson JC, et al. Fibrin-loaded porous poly(Ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A. 2013;19(1–2):224–234. doi: 10.1089/ten.tea.2012.0120
  • Wang P, Sun Y, Shi X, et al. 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf. 2021;4:344–378. doi: 10.1007/s42242-020-00109-0
  • Han W, Singh NK, Kim JJ, et al. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials. 2019;224:224. doi: 10.1016/j.biomaterials.2019.119496
  • Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–274. doi: 10.1016/j.biomaterials.2016.10.026
  • Lee CR, Lee YJ, Kwon BY, et al. Vessel-derived decellularized extracellular matrices (VdECM): novel bio-engineered materials for the wound healing. Tissue Eng Regen Med. 2023;20(1):59–67. doi: 10.1007/s13770-022-00511-y
  • Hynes RO, Naba A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4:a004903–a004903. doi: 10.1101/cshperspect.a004903
  • Choudhury D, Tun HW, Wang T, et al. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787–805. doi: 10.1016/j.tibtech.2018.03.003
  • Freytes DO, Martin J, Velankar SS, et al. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29(11):1630–1637. doi: 10.1016/j.biomaterials.2007.12.014
  • Brightman AO, Rajwa BP, Sturgis JE, et al. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers. 2000;54(3):222–234. doi: 10.1002/1097-0282(200009)54:3<222:AID-BIP80>3.0.CO;2-K
  • Kim BS, Kim H, Gao G, et al. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 2017;9(3):034104. doi: 10.1088/1758-5090/aa7e98
  • Traverse JH, Henry TD, Dib N, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci. 2019;4(6):659–669. doi: 10.1016/j.jacbts.2019.07.012
  • Wang D, Xu Y, Li Q, et al. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B. 2020;8(9):1801–1822. doi: 10.1039/C9TB01849B
  • Schechner JS, Nath AK, Zheng L, et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. PNAS. 2000;97(16):9191–9196. doi: 10.1073/pnas.150242297
  • Lee H, Jang TS, Han G, et al. Freeform 3D printing of vascularized tissues: challenges and strategies. J Tissue Eng. 2021;12:20417314211057236. doi: 10.1177/20417314211057236
  • Li J, Zhang T, Pan M, et al. Nanofiber/Hydrogel core–shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J Nanobiotechnol. 2022;20(1):28. doi: 10.1186/s12951-021-01208-5
  • Rickel AP, Deng X, Engebretson D, et al. Electrospun nanofiber scaffold for vascular tissue engineering. Mater Sci Eng C. 2021;129:112373. doi: 10.1016/j.msec.2021.112373
  • Dessalles CA, Leclech C, Castagnino A, et al. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol. 2021;4(1):764. doi: 10.1038/s42003-021-02285-w
  • Hasan A, Paul A, Memic A, et al. A multilayered microfluidic blood vessel-like structure. Biomed Microdevices. 2015;17(5):88. doi: 10.1007/s10544-015-9993-2
  • Wu X, Chen K, Chai Q, et al. Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks. Biomater Sci. 2022;133:112658. doi: 10.1016/j.msec.2022.112658
  • Zeng J, Matsusaki M. Analysis of thickness and roughness effects of artificial basement membranes on Endothelial cell functions. Anal Sci. 2021;37:491–497. doi: 10.2116/analsci.20SCP10
  • Zhang H, Chang H, Wang LM, et al. Effect of polyelectrolyte film stiffness on Endothelial cells during Endothelial-to-mesenchymal transition. Biomacromolecules. 2015;16(11):3584–3593. doi: 10.1021/acs.biomac.5b01057
  • Charbonier FW, Zamani M, Huang NF. Endothelial cell mechanotransduction in the dynamic vascular environment. Adv Biosyst. 2019;3(2):1800252. doi: 10.1002/adbi.201800252
  • Sharma D, Ross D, Wang G, et al. Upgrading prevascularization in tissue engineering: a review of strategies for promoting highly organized microvascular network formation. Acta Biomater. 2019;95:112–130. doi: 10.1016/j.actbio.2019.03.016
  • Vernon RB, Sage EH. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc Res. 1999;57(2):118–133. doi: 10.1006/mvre.1998.2122
  • Guillemette MD, Cui B, Roy E, et al. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integr Biol. 2009;1(2):196–204. doi: 10.1039/b820208g
  • Von Der Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010;339:131–153. doi: 10.1007/s00441-009-0896-5
  • Liliensiek SJ, Nealey P, Murphy CJ. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng Part A. 2009;15(9):2643–2651. doi: 10.1089/ten.tea.2008.0284
  • Chiu YC, Cheng MH, Engel H, et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials. 2011;32(26):6045–6051. doi: 10.1016/j.biomaterials.2011.04.066
  • Berdichevski A, Birch MA, Markaki AE. Collagen scaffolds with tailored pore geometry for building three-dimensional vascular networks. Mater Lett. 2019;248:93–96. doi: 10.1016/j.matlet.2019.03.137
  • Ahmed A, Joshi IM, Larson S, et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Adv Mater Technol. 2021;6(4):6. doi: 10.1002/admt.202001186
  • McCoy MG, Nyanyo D, Hung CK, et al. Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. Sci Rep. 2019;9(1):9069. doi: 10.1038/s41598-019-45535-y
  • Gaharwar AK, Nikkhah M, Sant S, et al. Anisotropic poly (glycerol sebacate)-poly (-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication. 2015;7:015001. doi: 10.1088/1758-5090/7/1/015001
  • Whited BM, Rylander MN. The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow. Biotechnol Bioeng. 2014;111(1):184–195. doi: 10.1002/bit.24995
  • Ryma M, Genç H, Nadernezhad A, et al. A print-and-fuse strategy for sacrificial filaments enables biomimetically structured perfusable microvascular networks with functional endothelium inside 3D hydrogels. Adv Mater. 2022;34(28):2200653. doi: 10.1002/adma.202200653
  • Høier B, Olsen K, Nyberg M, et al. Contraction-induced secretion of VEGF from skeletal muscle cells is mediated by adenosine. Am J Physiol Heart Circ Physiol. 2010;299:857–862. doi: 10.1152/ajpheart.00082.2010
  • Jensen L, Schjerling P, Hellsten Y. Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells. Angiogenesis. 2004;7(3):255–267. doi: 10.1007/s10456-004-4184-4
  • Hoier B, Prats C, Qvortrup K, et al. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J. 2013;27(9):3496–3504. doi: 10.1096/fj.12-224618
  • Galie PA, Van Oosten A, Chen CS, et al. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab Chip. 2015;15(4):1205–1212. doi: 10.1039/C4LC01236D
  • Kim S, Lee H, Chung M, et al. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13(8):1489–1500. doi: 10.1039/c3lc41320a
  • Galie PA, Nguyen DHT, Choi CK, et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci USA. 2014;111(22):7968–7973. doi: 10.1073/pnas.1310842111
  • Shirure VS, Lezia A, Tao A, et al. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis. 2017;20(4):493–504. doi: 10.1007/s10456-017-9559-4
  • Song JW, Munn LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA. 2011;108(37):15342–15347. doi: 10.1073/pnas.1105316108
  • Yano Y, Geibel J, Sumpio BE. Cyclic strain induces reorganization of integrin alpha 5 beta 1 and alpha 2 beta 1 in human umbilical vein endothelial cells. J Cell Biochem. 1997;64:505–513. doi: 10.1002/(SICI)1097-4644(19970301)64:3<505:AID-JCB17>3.0.CO;2-E
  • Krishnan L, Underwood CJ, Maas S, et al. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res. 2008;78(2):324–332. doi: 10.1093/cvr/cvn055
  • Hellsten Y, Hoier B. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans. 2014;42(6):1616–1622. doi: 10.1042/BST20140197
  • Morin KT, Dries-Devlin JL, Tranquillo RT. Engineered microvessels with strong alignment and high lumen density via cell-induced fibrin gel compaction and interstitial flow. Tissue Eng Part A. 2014;20:553–565. doi: 10.1089/ten.tea.2013.0262
  • Deng J, Cheng C, Teng Y, et al. Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. Polym Chem. 2017;8(14):2266–2275. doi: 10.1039/C7PY00071E
  • Peng X, Wang X, Cheng C, et al. Bioinspired, artificial, small-diameter vascular grafts with selective and rapid endothelialization based on an Amniotic membrane-derived hydrogel. ACS Biomater Sci Eng. 2020;6(3):1603–1613. doi: 10.1021/acsbiomaterials.9b01493
  • Moore MJ, Tan RP, Yang N, et al. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40(6):693–707. doi: 10.1016/j.tibtech.2021.11.003
  • Largo RA, Ramakrishnan VM, Marschall JS, et al. Long-term biostability and bioactivity of “fibrin linked” VEGF121in vitro and in vivo. Biomater Sci. 2014;2(4):581–590. doi: 10.1039/c3bm60270b
  • Liu J, Solanki A, White MJV, et al. Therapeutic use of α2-antiplasmin as an antifibrinolytic and hemostatic agent in surgery and regenerative medicine. NPJ Regen Med. 2022;7(1):34. doi: 10.1038/s41536-022-00230-x
  • Schumacher M, Habibović P, Van Rijt S. Peptide-modified nano-bioactive glass for targeted immobilization of native VEGF. ACS Appl Mater Interfaces. 2022;14(4):4959–4968. doi: 10.1021/acsami.1c21378
  • Wu Y, Song L, Shafiq M, et al. Peptides-tethered vascular grafts enable blood vessel regeneration via endogenous cell recruitment and neovascularization. Compos B Eng. 2023;252:110504. doi: 10.1016/j.compositesb.2023.110504
  • Adini A, Adini I, Ghosh K, et al. The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis. 2013;16(2):405–416. doi: 10.1007/s10456-012-9323-8
  • Omorphos NP, Gao C, Tan SS, et al. Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol Biol Rep. 2021;48(1):941–950. doi: 10.1007/s11033-020-06108-9
  • Hwang J, Kiick KL, Sullivan MO. VEGF-Encoding, gene-activated collagen-based matrices promote blood vessel formation and improved wound repair. ACS Appl Mater Interfaces. 2023;15(13):16434–16447. doi: 10.1021/acsami.2c23022
  • Ren X, Zhao M, Lash B, et al. Growth factor engineering strategies for regenerative medicine applications. Front Bioeng Biotechnol. 2020;7. doi: 10.3389/fbioe.2019.00469
  • Lovett M, Lee K, Edwards A, et al. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15(3):353–370. doi: 10.1089/ten.teb.2009.0085
  • Potente M, Mäkinen T. Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol. 2017;18(8):477–494. doi: 10.1038/nrm.2017.36
  • Cai Q, Liao W, Xue F, et al. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater. 2021;6:2557–2568. doi: 10.1016/j.bioactmat.2020.12.021
  • Mastrullo V, Cathery W, Velliou E, et al. Angiogenesis in tissue engineering: as nature intended? Front Bioeng Biotechnol. 2020;8:8. doi: 10.3389/fbioe.2020.00188
  • Shalumon KT, Deepthi S, Anupama MS, et al. Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol. 2015;72:1048–1055. doi: 10.1016/j.ijbiomac.2014.09.058
  • Gao G, Park W, Kim BS, et al. Construction of a novel in vitro atherosclerotic model from geometry-tunable artery equivalents engineered via in-bath coaxial cell printing. Adv Funct Mater. 2021;31(10):31. doi: 10.1002/adfm.202008878
  • Yeo M, Kim GH. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater. 2020;107:102–114. doi: 10.1016/j.actbio.2020.02.042
  • Twal WO, Klatt SC, Harikrishnan K, et al. Cellularized microcarriers as adhesive building blocks for fabrication of tubular tissue constructs. Ann Biomed Eng. 2014;42(7):1470–1481. doi: 10.1007/s10439-013-0883-6
  • Correia CR, Bjørge IM, Zeng J, et al. Liquefied microcapsules as dual-microcarriers for 3D+3D bottom-up tissue engineering. Adv Healthc Mater. 2019;8(22). doi: 10.1002/adhm.201901221
  • Li X, Xu J, Nicolescu CT, et al. Generation, endothelialization, and microsurgical suture anastomosis of strong 1-mm-diameter collagen tubes. Tissue Eng Part A. 2017;23(7–8):335–344. doi: 10.1089/ten.tea.2016.0339
  • Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft – past, present, and future. Tissue Eng Part B Rev. 2016;22:68–100. doi: 10.1089/ten.teb.2015.0100
  • Li X, Xia J, Nicolescu CT, et al. Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones. Biofabrication. 2019;11:014101. doi: 10.1088/1758-5090/aae5fe
  • Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res. 2006;71(3):185–196. doi: 10.1016/j.mvr.2006.02.005
  • Mori N, Morimoto Y, Takeuchi S. Skin integrated with perfusable vascular channels on a chip. Biomaterials. 2017;116:48–56. doi: 10.1016/j.biomaterials.2016.11.031
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785. doi: 10.1038/nbt.2958
  • Hull CW. Apparatus for production of three-dimensional objects by stereolithography. Arcadia (CA). 1986.
  • Matsusaki M, Sakaue K, Kadowaki K, et al. Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater. 2013;2(4):534–539. doi: 10.1002/adhm.201200299
  • Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. 2019;6(11):1900344. doi: 10.1002/advs.201900344
  • Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science (1979). 2019;365(6452):482–487. doi: 10.1126/science.aav9051
  • Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci USA. 2019;116(12):5399–5404. doi: 10.1073/pnas.1815208116
  • Lei D, Yang Y, Liu Z, et al. 3D printing of biomimetic vasculature for tissue regeneration. Mater Horiz. 2019;6(6):1197–1206. doi: 10.1039/C9MH00174C
  • Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication. 2019;11(4):045002. doi: 10.1088/1758-5090/ab2620
  • Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science (1979). 2019;364:458–464. doi: 10.1126/science.aav9750
  • Cui H, Esworthy T, Zhou X, et al. Engineering a novel 3D printed vascularized tissue model for investigating breast cancer metastasis to bone. Adv Healthc Mater. 2020;9(15):1900924. doi: 10.1002/adhm.201900924
  • Grebenyuk S, Abdel Fattah AR, Kumar M, et al. Large-scale perfused tissues via synthetic 3D soft microfluidics. Nat Commun. 2023;14(1):193. doi: 10.1038/s41467-022-35619-1
  • Christensen K, Xu C, Chai W, et al. Freeform inkjet printing of cellular structures with Bifurcations. Biotechnol Bioeng. 2015;112(5):1047–1055. doi: 10.1002/bit.25501
  • Pataky K, Braschler T, Negro A, et al. Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater. 2012;24(3):391–396. doi: 10.1002/adma.201102800
  • Zeng J, Xie Z, Dekishima Y, et al. Out-of-the-box granular gel bath based on cationic polyvinyl alcohol microgels for embedded extrusion printing. Macromol Rapid Commun. 2023;44:2300025. doi: 10.1002/marc.202300025
  • Al Rashid A, Ahmed W, Khalid MY, et al. Vat photopolymerization of polymers and polymer composites: processes and applications. Addit Manuf. 2021;47:102279. doi: 10.1016/j.addma.2021.102279
  • Koch L, Deiwick A, Chichkov B. Capillary-like formations of endothelial cells in defined patterns generated by laser bioprinting. Micromachines (Basel). 2021;12(12):1538. doi: 10.3390/mi12121538
  • Nishiyama Y, Nakamura M, Henmi C, et al. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng. 2009;131(3):035001. doi: 10.1115/1.3002759
  • Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30(31):6221–6227. doi: 10.1016/j.biomaterials.2009.07.056
  • Schwab A, Levato R, D’Este M, et al. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028–11055. doi: 10.1021/acs.chemrev.0c00084
  • Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6(2):024105. doi: 10.1088/1758-5082/6/2/024105
  • Molley TG, Jalandhra GK, Nemec SR, et al. Freeform printing of heterotypic tumor models within cell-laden microgel matrices. Biomater Sci. 2021;9:4496–4509. doi: 10.1039/D1BM00574J
  • Compaan AM, Song K, Chai W, et al. Cross-linkable microgel composite matrix bath for embedded bioprinting of perfusable tissue constructs and sculpting of solid objects. ACS Appl Mater Interfaces. 2020;12(7):7855–7868. doi: 10.1021/acsami.9b15451
  • Mistry P, Aied A, Alexander M, et al. Bioprinting using mechanically robust core–shell cell-laden hydrogel strands. Macromol BioSci. 2017;17(6):1600472. doi: 10.1002/mabi.201600472
  • Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. doi: 10.1016/j.biomaterials.2016.09.003
  • Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater. 2013;2(6):777–783. doi: 10.1002/adhm.201200303
  • Yu Y, Zhang Y, Martin JA, et al. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng. 2013;135(9):91011. doi: 10.1115/1.4024575
  • Zhang Y, Yu Y, Ozbolat IT. Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med. 2013;4:210011–210017. doi: 10.1115/1.4024398
  • Zhang Y, Yu Y, Chen H, et al. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication. 2013;5(2):025004. doi: 10.1088/1758-5082/5/2/025004
  • Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106–115. doi: 10.1016/j.biomaterials.2017.01.042
  • Wu PK, Ringeisen BR. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication. 2010;2(1):014111. doi: 10.1088/1758-5082/2/1/014111
  • Xiong R, Zhang Z, Chai W, et al. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication. 2015;7(4):045011. doi: 10.1088/1758-5090/7/4/045011
  • Lee VK, Lanzi AM, Ngo H, et al. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng. 2014;7(3):460–472. doi: 10.1007/s12195-014-0340-0
  • Hu M, Dailamy A, Lei XY, et al. Facile engineering of long-term culturable ex vivo vascularized tissues using biologically derived matrices. Adv Healthc Mater. 2018;7(23):1800845. doi: 10.1002/adhm.201800845
  • Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–774. doi: 10.1038/nmat3357
  • Sarker MD, Naghieh S, Sharma NK, et al. 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J Pharm Anal. 2018;8(5):277–296. doi: 10.1016/j.jpha.2018.08.005
  • Duan N, Geng X, Ye L, et al. A vascular tissue engineering scaffold with core–shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomed Mater. 2016;11(3):035007. doi: 10.1088/1748-6041/11/3/035007
  • Ye L, Cao J, Chen L, et al. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. J Biomed Mater Res A. 2015;103:3863–3871. doi: 10.1002/jbm.a.35531
  • Yan S, Napiwocki B, Xu Y, et al. Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane. Mater Sci Eng C. 2020;107:110311. doi: 10.1016/j.msec.2019.110311
  • Joshi VS, Lei NY, Walthers CM, et al. Macroporosity enhances vascularization of electrospun scaffolds. J Surg Res. 2013;183(1):18–26. doi: 10.1016/j.jss.2013.01.005
  • Weekes A, Bartnikowski N, Pinto N, et al. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater. 2022;138:92–111. doi: 10.1016/j.actbio.2021.11.012
  • Voorneveld J, Oosthuysen A, Franz T, et al. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth. J Biomed Mater Res B Appl Biomater. 2017;105(6):1559–1572. doi: 10.1002/jbm.b.33695
  • Hodge J, Quint C. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles. J Biomed Mater Res A. 2019;107:1954–1964. doi: 10.1002/jbm.a.36706
  • Hsia K, Lin CH, Lee HY, et al. Sphingosine-1-phosphate in endothelial cell recellularization improves patency and endothelialization of decellularized vascular grafts in vivo. Int J Mol Sci. 2019;20(7):20. doi: 10.3390/ijms20071641
  • Simsa R, Vila XM, Salzer E, et al. Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels. PLoS One. 2019;14(8):14. doi: 10.1371/journal.pone.0220743
  • Rambøl MH, Hisdal J, Sundhagen JO, et al. Recellularization of decellularized venous grafts using peripheral blood: a critical evaluation. EBioMedicine. 2018;32:215–222. doi: 10.1016/j.ebiom.2018.05.012
  • Mallis P, Michalopoulos E, Pantsios P, et al. Recellularization potential of small diameter vascular grafts derived from human umbilical artery. Biomed Mater Eng. 2019;30:61–71. doi: 10.3233/BME-181033
  • Kajbafzadeh A-M, Khorramirouz R, Kameli SM, et al. Three-year efficacy and patency follow-up of decellularized human internal mammary artery as a novel vascular graft in animal models. J Thorac Cardiovasc Surg. 2019;157(4):1494–1502. doi: 10.1016/j.jtcvs.2018.08.106
  • Eufrásio-da-Silva T, Ruiz-Hernandez E, O’Dwyer J, et al. Enhancing medial layer recellularization of tissue-engineered blood vessels using radial microchannels. Regenerative Med. 2019;14:1013–1028. doi: 10.2217/rme-2019-0011
  • Lin C-H, Hsia K, Tsai C-H, et al. Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering. Biomed Mater. 2019;14:045014. doi: 10.1088/1748-605X/ab2329
  • Hazwani A, Sha’ban M, Azhim A. Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system. Organogenesis. 2019;15(4):120–136. doi: 10.1080/15476278.2019.1656997
  • Kumar Kuna V, Xu B, Sumitran-Holgersson S. Decellularization and recellularization methodology for human saphenous veins. JoVE. 2018;e57803. doi: 10.3791/57803-v
  • Karakaya C, van Asten JGM, Ristori T, et al. Mechano-regulated cell–cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol. 2022;21(1):5–54. doi: 10.1007/s10237-021-01521-w
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–3243. doi: 10.1016/j.biomaterials.2011.01.057
  • Gui L, Muto A, Chan SA, et al. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng Part A. 2009;15(9):2665–2676. doi: 10.1089/ten.tea.2008.0526
  • Lawson JH, Glickman MH, Ilzecki M, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016;387(10032):2026–2034. doi: 10.1016/S0140-6736(16)00557-2
  • Wang X, Chan V, Corridon PR. Decellularized blood vessel development: current state-of-the-art and future directions. Front Bioeng Biotechnol. 2022;10:10. doi: 10.3389/fbioe.2022.951644
  • Cuenca JP, Padalhin A, Lee B-T. Small-diameter decellularized vascular graft with electrospun polycaprolactone. Mater Lett. 2021;284:128973. doi: 10.1016/j.matlet.2020.128973
  • Kristofik NJ, Qin L, Calabro NE, et al. Improving in vivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix. Biomaterials. 2017;141:63–73. doi: 10.1016/j.biomaterials.2017.06.025
  • Giovanniello F, Asgari M, Breslavsky ID, et al. Development and mechanical characterization of decellularized scaffolds for an active aortic graft. Acta Biomater. 2023;160:59–72. doi: 10.1016/j.actbio.2023.02.013
  • Hsia K, Wang TS, Liu CS, et al. Decellularized human umbilical artery exhibits adequate endothelialization in xenogenic transplantation. Biotechnol Bioprocess Eng. 2023;28(3):439–450. doi: 10.1007/s12257-022-0256-9
  • Debbi L, Zohar B, Shuhmaher M, et al. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. Biomaterials. 2022;280:280. doi: 10.1016/j.biomaterials.2021.121286
  • Tan W, Boodagh P, Selvakumar PP, et al. Strategies to counteract adverse remodeling of vascular graft: a 3D view of current graft innovations. Front Bioeng Biotechnol. 2023;10:1097334. doi: 10.3389/fbioe.2022.1097334
  • Zhang Z, Wang B, Hui D, et al. 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Compos B Eng. 2017;123:279–291. doi: 10.1016/j.compositesb.2017.05.011
  • Shakeel A, Corridon PR. Mitigating challenges and expanding the future of vascular tissue engineering—are we there yet? Front physiol. 2023;13:1079421. doi: 10.3389/fphys.2022.1079421
  • The International Organization for Standardization (ISO). ISO 7198:2016(en) cardiovascular implants and extracorporeal systems – vascular prostheses – tubular vascular grafts and vascular patches. Geneva (Switzerland): International Organization for Standardization (ISO); 2016.