427
Views
0
CrossRef citations to date
0
Altmetric
Focus On Dr. Ariga 60th Anniversary: From Nanotechnology to Nanoarchitectonics

Mechanical control of molecular machines at an air–water interface: manipulation of molecular pliers, paddles

ORCID Icon
Article: 2334667 | Received 26 Dec 2023, Accepted 20 Mar 2024, Published online: 15 Apr 2024

References

  • Sauvage J-P. Gaspard P from non-covalent assemblies to molecular machines. Weinheim: Wiley-VCH; 2010.
  • Astumian RD. How molecular motors work – insights from the molecular machinist’s toolbox: the Nobel Prize in Chemistry 2016. Chem Sci. 2017;8(2):840–14. doi: 10.1039/C6SC04806D
  • Eelkema R, Pollard MM, Vicario J, et al. Molecular machines: nanomotor rotates microscale objects. Nature. 2006;440(7081):163. doi: 10.1038/440163a
  • Beyer MK, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev. 2005;105(8):2921–2948. doi: 10.1021/cr030697h
  • Mickler M, Schleiff E, Hugel T. From biological towards artificial molecular motors. ChemPhysChem. 2008;9(11):1503–1509. doi: 10.1002/cphc.200800216
  • Ariga K, Mori T, Hill JP. Mechanical control of nanomaterials and nanosystems. Adv Mater. 2012;24(2):158–176. doi: 10.1002/adma.201102617
  • Del Rio A, Perez-Jimenez R, Liu R, et al. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323(5914):638–641. doi: 10.1126/science.1162912
  • Kitamura K, Tokunaga M, Iwane AH, et al. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature. 1999;397(6715):129–134. doi: 10.1038/16403
  • Perera UGE, Ample F, Kersell H, et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat Nanotech. 2013;8(1):46–51. doi: 10.1038/nnano.2012.218
  • Soe WH, Shirai Y, Durand C, et al. Conformation manipulation and motion of a double paddle molecule on an Au(111) surface. ACS Nano. 2017;11(10):10357–10365. doi: 10.1021/acsnano.7b05314
  • Juluri BK, Kumar AS, Liu Y, et al. A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano. 2009;3(2):291–300. doi: 10.1021/nn8002373
  • García-López V, Chen F, Nilewski LG, et al. Molecular machines open cell membranes. Nature. 2017;548(7669):567–572. doi: 10.1038/nature23657
  • Kim J, Swager TM. Control of conformational and interpolymer effects in conjugated polymers. Nature. 2001;411(6841):1030–1034. doi: 10.1038/35082528
  • Tabe Y, Yokoyama H. Coherent collective precession of molecular rotors with chiral propellers. Nat Mater. 2003;2(12):806–809. doi: 10.1038/nmat1017
  • Ohata T, Tachimoto K, Takeno KJ, et al. Influence of the solvent on the assembly of Ni3(hexaiminotriphenylene)2 metal–organic framework nanosheets at the air/liquid interface. Bull Chem Soc Jpn. 2023;96(3):274–282. doi: 10.1246/bcsj.20220283
  • Mitoma H, Takeuvhi C, Sugiyama R, et al. Thermo-responsive silver nanocube assembled films. Bull Chem Soc Jpn. 2022;95(5):771–773. doi: 10.1246/bcsj.20220047
  • Ishii M, Yamashita Y, Watanabe S, et al. Doping of molecular semiconductors through proton-coupled electron transfer. Nature. 2023;622(7982):285–291. doi: 10.1038/s41586-023-06504-8
  • Ariga K, Yamauchi Y, Mori T, et al. 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater. 2013;25(45):6477–6512. doi: 10.1002/adma.201302283
  • Ariga K, Nakanishi T, Terasaka Y, et al. Piezoluminescence at the air−water interface through dynamic molecular recognition driven by lateral pressure application. Langmuir. 2005 Feb 1;21(3):976–981. doi: 10.1021/la0477845
  • Michinobu T, Shinoda S, Nakanishi T, et al. Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air–water interface. J Am Chem Soc. 2006;128(45):14478–14479. doi: 10.1021/ja066429t
  • Mori T, Okamoto K, Endo H, et al. Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. J Am Chem Soc. 2010;132(37):12868–12870. doi: 10.1021/ja106653a
  • Sakakibara K, Joyce LA, Mori T, et al. A mechanically controlled indicator displacement assay. Angew Chem Int Ed Engl. 2012;51(38):9643–9646. doi: 10.1002/anie.201203402
  • Sakakibara K, Fujisawa T, Hill JP, et al. Conformational interchange of a carbohydrate by mechanical compression at the air–water interface. Phys Chem Chem Phys. 2014;16(22):10286–10294. doi: 10.1039/c3cp55078h
  • Ishikawa D, Mori T, Yonamine Y, et al. Mechanochemical tuning of the binaphthyl conformation at the air–water interface. Angew Chem Int Ed Engl. 2015;54(31):8988–8991. doi: 10.1002/anie.201503363
  • Mori T, Ishikawa D, Yonamine Y, et al. Mechanically induced opening–closing action of binaphthyl molecular pliers: digital phase transition versus continuous conformational change. Chemphyschem. 2017;18(11):1470–1474. doi: 10.1002/cphc.201601144
  • Adachi J, Mori T, Inoue R, et al. Emission control by molecular manipulation of double-paddled binuclear Pt II complexes at the air-water Interface. Chem Asian J. 2020;15(3):406–414. doi: 10.1002/asia.201901691
  • Mori T, Komatsu H, Sakamoto N, et al. Molecular rotors confined at an ordered 2D interface. Phys Chem Chem Phys. 2018 Jan 31;20(5):3073–3078. doi: 10.1039/c7cp04256f
  • Mori T, Chin H, Kawashima K, et al. Dynamic control of intramolecular rotation by tuning the surrounding two-dimensional matrix field. ACS Nano. 2019;13(2):2410–2419. doi: 10.1021/acsnano.8b09320
  • Ishii M, Mori T, Nakanishi W, et al. Helicity manipulation of a double-paddled binaphthyl in a two-dimensional matrix field at the air–water interface. ACS Nano. 2020;14(10):13294–13303. doi: 10.1021/acsnano.0c05093
  • Ishii M, Mori T, Nakanishi W, et al. Mechanical tuning of aggregated states for conformation control of cyclized binaphthyl at the air–water interface. Langmuir. 2022;38(20):6481–6490. doi: 10.1021/acs.langmuir.2c00796
  • Akine S, Nomura K, Takahashi M, et al. Synthesis of amphiphilic chiral salen complexes and their conformational manipulation at the air–water interface. Dalton Trans. 2023;52(2):260–268. doi: 10.1039/d2dt03201e
  • Kočovský P, Vyskočil S, Smrčina M. Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem Rev. 2003;103(8):3213–3246. doi: 10.1021/cr9900230
  • Negi S, Hamori M, Kitagishi H, et al. Highly ordered monolayers of an optically active amphiphilic pyrene derivative at the air–water interface. Bull Chem Soc Jpn. 2022;95(11):1537–1545. doi: 10.1246/bcsj.20220233
  • Naota T, Koori H. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J Am Chem Soc. 2005;127(26):9324–9325. doi: 10.1021/ja050809h
  • Komiya N, Okada M, Fukumoto K, et al. Highly phosphorescent crystals of vaulted trans-bis(salicylaldiminato)platinum(II) complexes. J Am Chem Soc. 2011;133(17):6493–6496. doi: 10.1021/ja110398p
  • Le NHT, Inoue R, Kawamorita S, et al. Phosphorescent molecules that resist concentration quenching in the solution state: concentration-driven emission enhancement of vaulted trans-bis[2-(iminomethyl)imidazolato]platinum(II) complexes. Inorg Chem. 2019;58(14):9076–9084. doi: 10.1021/acs.inorgchem.9b00608
  • Ikeshita M, Naota T. Dynamic rotational motions of vaulted chiral trans-Bis(salicylaldiminato)palladium(II) complexes bearing rigid or flexible carbon chain linkers. Eur J Inorg Chem. 2018;2018(43):4689–4695. doi: 10.1002/ejic.201800666
  • Maeda T, Mori T, Ikeshita M, et al. Vortex flow-controlled circularly polarized luminescence of achiral Pt(II) complex aggregates assembled at the air–water interface. Small Methods. 2022;6(12):e2200936. doi: 10.1002/smtd.202200936 Pt(II
  • Inoue R, Naito M, Ehara M, et al. Heat-resistant properties in the phosphorescence of trans -Bis[β-(iminomethyl)aryloxy]platinum(II) complexes: effect of aromaticity on d–π conjugation platforms. Chemistry. 2019;25(14):3650–3661. doi: 10.1002/chem.201805785.2022;65(6):889-897
  • Adachi J, Naito M, Sugiura S, et al. Coordination amphiphile: design of planar-coordinated platinum complexes for monolayer formation at an air–water interface based on ligand characteristics and molecular topology. Bull Chem Soc Jpn. 2022;95(6):889–897. doi: 10.1246/bcsj.20220086
  • Valeur B. Molecular fluorescence: principles and applications. Weinheim: Wiley-VCH Verlag GmbH; 2001.
  • Haidekker MA, Ling TT, Anglo M, et al. New fluorescent probes for the measurement of cell membrane viscosity. Chem Biol. 2001;8(2):123–131. doi: 10.1016/s1074-5521(00)90061-9
  • Nipper ME, Majd S, Mayer M, et al. Characterization of changes in the viscosity of lipid membranes with the molecular rotor FCVJ. Biochim Biophys Acta. 2008;1778(4):1148–1153. doi: 10.1016/j.bbamem.2008.01.005
  • Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev. 2007;107(11):4891–4932. doi: 10.1021/cr078381n
  • Korlach J, Schwille P, Webb WW, et al. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA. 1999;96(15):8461–8466. doi: 10.1073/pnas.96.15.8461