204
Views
0
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Nanocatalytic NO gas therapy against orthotopic oral squamous cell carcinoma by single iron atomic nanocatalysts

, , &
Article: 2368452 | Received 16 Jan 2024, Accepted 11 Jun 2024, Published online: 10 Jul 2024

References

  • Cramer JD, Burtness B, Le QT, et al. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 2019 Nov;16(11):669–16. doi: 10.1038/s41571-019-0227-z
  • Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018 Oct;52(Pt 2):228–240. doi: 10.1016/j.semcancer.2018.01.008
  • Chow LQM, Longo DL. Head and neck cancer. N Engl J Med. 2020 Jan 2;382(1):60–72. doi: 10.1056/NEJMra1715715
  • Machiels JP, René Leemans C, Golusinski W, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020 Nov;31(11):1462–1475. doi: 10.1016/j.annonc.2020.07.011
  • Taberna M, Mena M, Pavón MA, et al. Human papillomavirus-related oropharyngeal cancer. Ann Oncol. 2017 Oct 1;28(10):2386–2398. doi: 10.1093/annonc/mdx304
  • Cohen EEW, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019 Jan 12;393(10167):156–167. doi: 10.1016/s0140-6736(18)31999-8
  • Driehuis E, Kolders S, Spelier S, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 2019 Jul;9(7):852–871. doi: 10.1158/2159-8290.Cd-18-1522
  • Hanna GJ, O’Neill A, Shin KY, et al. Neoadjuvant and adjuvant Nivolumab and Lirilumab in patients with recurrent, resectable squamous cell carcinoma of the head and neck. Clin Cancer Res. 2022 Feb 1;28(3):468–478. doi: 10.1158/1078-0432.Ccr-21-2635
  • Graboyes EM, Kompelli AR, Neskey DM, et al. Association of treatment delays with survival for patients with head and neck cancer: a systematic review. JAMA Otolaryngol–Head Neck Surg. 2019 Feb 1;145(2):166–177. doi: 10.1001/jamaoto.2018.2716
  • Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020 Nov 26;6(1):92. doi: 10.1038/s41572-020-00224-3
  • Lee NY, Ferris RL, Psyrri A, et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2021 Apr;22(4):450–462. doi: 10.1016/s1470-2045(20)30737-3
  • Zhao Y, Zhou H, Zhu X, et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat Catal. 2021 Feb;4(2):134–143. doi: 10.1038/s41929-020-00563-0
  • Tang Z, Zhao P, Wang H, et al. Biomedicine meets Fenton chemistry. Chem Rev. 2021;121(4):1981–2019. doi: 10.1021/acs.chemrev.0c00977
  • Li L, Chang X, Lin X, et al. Theoretical insights into single-atom catalysts. Chem Soc Rev. 2020 Nov 21;49(22):8156–8178. doi: 10.1039/d0cs00795a
  • Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3D-Printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater. 2021;33(31):e2100150. doi: 10.1002/adma.202100150
  • Singh B, Gawande M, Kute A, et al. Single-atom (iron-based) catalysts: synthesis and applications. Chem Rev. 2021;121(21):13620–13697. doi: 10.1021/acs.chemrev.1c00158
  • Liu P, Huo M, Shi J. Nanocatalytic medicine of iron-based nanocatalysts. CCS Chem. 2021;3(2):2445–2463. doi: 10.31635/ccschem.020.202000519
  • Huo M, Wang L, Zhang H, et al. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small. 2019 Aug;15(31):e1901834. doi: 10.1002/smll.201901834
  • Zhang H, Li J, Chen Y, et al. Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv Mater. 2021;33(17):e2100472. doi: 10.1002/adma.202100472
  • Fu L, Wan Y, Qi C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv Mater. 2021;33(7):e2006892. doi: 10.1002/adma.202006892
  • Huo M, Wang L, Wang Y, et al. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano. 2019 Feb 26;13(2):2643–2653. doi: 10.1021/acsnano.9b00457
  • Fu LH, Wan Y, Qi C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv Mater. 2021 Feb;33(7):e2006892. doi: 10.1002/adma.202006892
  • Palmieri EM, Gonzalez-Cotto M, Baseler WA, et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat Commun. 2020 Feb 4;11(1):698. doi: 10.1038/s41467-020-14433-7
  • Lundberg J, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185(16):2853–2878. doi: 10.1016/j.cell.2022.06.010
  • Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol. 2021;17(9):575–590. doi: 10.1038/s41581-021-00429-z
  • Yang C, Mu G, Zhang Y, et al. Supramolecular nitric oxide depot for hypoxic tumor vessel normalization and radiosensitization. Adv Mater. 2022;34(37):e2202625. doi: 10.1002/adma.202202625
  • Weinstain R, Slanina T, Kand D, et al. Visible-to-NIR-Light activated release: from small molecules to nanomaterials. Chem Rev. 2020 Dec 23;120(24):13135–13272. doi: 10.1021/acs.chemrev.0c00663
  • Kim T, Nah Y, Kim J, et al. Nitric-oxide-modulatory materials for biomedical applications. Acc Chem Res. 2022;55(17):2384–2396. doi: 10.1021/acs.accounts.2c00159
  • Zhou H, Premont R, Stamler J. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol. 2022;18(2):111–128. doi: 10.1038/s41574-021-00583-1
  • Sung Y, Jin P, Chu L, et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotech. 2019;14(12):1160–1169. doi: 10.1038/s41565-019-0570-3
  • Seth P, Hsieh P, Jamal S, et al. Regulation of MicroRNA machinery and development by interspecies S-Nitrosylation. Cell. 2019;176(5):1014–1025.e12. doi: 10.1016/j.cell.2019.01.037
  • Lehnert N, Kim E, Dong H, et al. The biologically relevant coordination chemistry of iron and nitric oxide: electronic structure and reactivity. Chem Rev. 2021;121(24):14682–14905. doi: 10.1021/acs.chemrev.1c00253
  • Narni-Mancinelli E, Vivier E. Advancing natural killer therapies against cancer. Cell. 2022;185(9):1451–1454. doi: 10.1016/j.cell.2022.04.006
  • Gamero-Quijano A, Bhattacharya S, Cazade P, et al. Modulating the pro-apoptotic activity of cytochrome c at a biomimetic electrified interface. Sci Adv. 2021;7(45):eabg4119. doi: 10.1126/sciadv.abg4119
  • Glimmers of hope for targeting p53. Cancer Discov. 2022;12(8):OF5–OF5. doi: 10.1158/2159-8290.Cd-nd2022-0009
  • Eisenstein M. p53: an anticancer protein’s chequered past and promising future. Nature. 2022;603(7899):S1. doi: 10.1038/d41586-022-00565-x
  • Garciaz S, Guirguis A, Müller S, et al. Pharmacologic reduction of mitochondrial iron triggers a noncanonical BAX/BAK-Dependent cell death. Cancer Discov. 2022;12(3):774–791. doi: 10.1158/2159-8290.Cd-21-0522
  • Yamazaki T, Galluzzi L. BAX and BAK dynamics control mitochondrial DNA release during apoptosis. Cell Death Differ. 2022;29(6):1296–1298. doi: 10.1038/s41418-022-00985-2
  • Li X, Straub J, Medeiros T, et al. Mitochondria shed their outer membrane in response to infection-induced stress. Science. 2022;375(6577):eabi4343. doi: 10.1126/science.abi4343
  • Bock F, Tait S. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100. doi: 10.1038/s41580-019-0173-8
  • Rosier B, Markvoort A, Gumí Audenis B, et al. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Nat Catal. 2020;3(3):295–306. doi: 10.1038/s41929-019-0403-7
  • Han C, Liu Z, Zhang Y, et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat Immunol. 2020;21(5):546–554. doi: 10.1038/s41590-020-0641-5