Publication Cover
Dynamical Systems
An International Journal
Volume 39, 2024 - Issue 1
37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cramér distance and discretizations of circle expanding maps II: simulations

&
Pages 108-140 | Received 07 Apr 2023, Accepted 06 Jul 2023, Published online: 16 Jul 2023

References

  • P.M. Binder, Limit cycles in a quadratic discrete iteration, Phys. D 57(1–2) (1992), pp. 31–38.
  • M. Blank, Discreteness and continuity in problems of chaotic dynamics, Amer. Math. Mon. 105(3) (1998), pp. 299 33299–(eng) .
  • S. Bobkov and M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances, Mem. Amer. Math. Soc. 261 (1259) (2019).
  • B. Bollobás, Random Graphs, 2nd ed., Cambridge University Press, 2001.
  • A. Boyarsky, Computer orbits, Comput. Math. Appl. Ser. A 12(10) (1986), pp. 1057–1064.
  • R.M. Corless, Continued fractions and chaos, Amer. Math. Monthly 99(3) (1992), pp. 203–215 MR 1216205.
  • R.M. Corless, G.W. Frank, and J.G. Monroe, Chaos and continued fractions, Phys. D 46(2) (1990), pp. 241–253 MR 1083721.
  • J. Dedecker and F. Merlevède, The empirical distribution function for dependent variables: asymptotic and nonasymptotic results in Lpp, ESAIM Probab. Stat. 11 (2007), pp. 102–114.
  • P. Diamond and I. Vladimirov, Asymptotic independence and uniform distribution of quantization errors for spatially discretized dynamical systems, Int. J. Bifurc. Chaos Appl. Sci. Eng. 8(7) (1998), pp. 1479–1490.
  • P. Diamond and I. Vladimirov, Branching processes and computational collapse of discretized unimodal mappings, Int. J. Bifurc. Chaos Appl. Sci. Eng. 12(12) (2002), pp. 2847–2867.
  • P. Diamond and I. Vladimirov, Set-valued Markov chains and negative semitrajectories of discretized dynamical systems, J. Nonlinear Sci. 12(2) (2002), pp. 113–141.
  • P. Diamond, P. Kloeden, and A.V. Pokrovskii, An invariant measure arising in computer simulation of a chaotic dynamical system, J. Nonlinear Sci. 4(1) (1994), pp. 59–68 MR 1258483 (94m:58136).
  • P. Diamond, P. Kloeden, A.V. Pokrovskii, and A. Vladimirov, Collapsing effects in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre, Phys. D 86(4) (1995), pp. 559–571 MR 1353178 (96e:58098).
  • P. Diamond, A. Klemm, P. Kloeden, and A. Pokrovskii, Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures, J. Stat. Phys. 84(3–4) (1996), pp. 713–733 MR 1400185 (97i:58102).
  • P. Diamond, M. Suzuki, P. Kloeden, and A. Pokrovskii, Statistical properties of discretizations of a class of chaotic dynamical systems, Comput. Math. Appl. 31(11) (1996), pp. 83–95 MR 1392078 (96m:58164).
  • P. Diamond, V. Kozyakin, P. Kloeden, and A. Pokrovskii, A model for roundoff and collapse in computation of chaotic dynamical systems, Math. Comput. Simul. 44(2) (1997), pp. 163–185 MR 1481914 (99a:58114).
  • T. Erber, T.M. Rynne, W.F. Darsow, and M.J. Frank, The simulation of random processes on digital computers: unavoidable order, J. Comput. Phys. 49(3) (1983), pp. 394–419.
  • P.P. Flockermann, Discretizations of expanding maps, Ph.D. thesis, ETH (Zurich), 2002
  • S. Galatolo and I. Nisoli, An elementary approach to rigorous approximation of invariant measures, SIAM. J. Appl. Dyn. Syst. 13(2) (2014), pp. 958–985.
  • S. Galatolo and A. Sorrentino, Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle, Discrete Contin. Dyn. Syst. 42(2) (2022), pp. 815–839.
  • S. Galatolo, I. Nisoli, and C. Rojas, Probability, statistics and computation in dynamical systems, Math. Struct. Comput. Sci. 24(3) (2014), pp. e240304, 25.
  • S. Galatolo, M. Monge, I. Nisoli, and F. Poloni, A general framework for the rigorous computation of invariant densities and the coarse-fine strategy, Chaos Solit. Fractals 170 (2023), pp. 113329.
  • P.-A. Guihéneuf, Dynamical properties of spatial discretizations of a generic homeomorphism, Ergod. Theory Dyn. Syst. 35(5) (2015), pp. 1474–1523.
  • P.-A. Guihéneuf, Discrétisations spatiales de systèmes dynamiques génériques, Ph.D. thesis, Université Paris-Sud, 2015
  • P.-A. Guihéneuf, Physical measures of discretizations of generic diffeomorphisms, to appear in Ergodic Theory and Dynamical Systems, (2015). arXiv:1510.00720
  • P.-A. Guihéneuf, Degree of recurrence of generic diffeomorphisms, Discrete Anal. (2019), Paper No. 1, 43. https://discreteanalysisjournal.com/article/7545.
  • P.-A. Guihéneuf and M. Monge, Cramér distance and discretizations of circle expanding maps I: theory, (2022). arXiv 2206.07991
  • P. Góra and A. Boyarsky, Why computers like Lebesgue measure, Comput. Math. Appl. 16(4) (1988), pp. 321–329.
  • P. Kloeden, J. Mustard, and A.V. Pokrovskii, Statistical properties of some spatially discretized dynamical systems, Z. Angew. Math. Phys. 50(4) (1999), pp. 638–660 MR 1709708 (2000e:37039).
  • O.E. Lanford, Informal remarks on the orbit structure of discrete approximations to chaotic maps, Exp. Math. 7(4) (1998), pp. 317–324.
  • Y.-E. Levy, Some remarks about computer studies of dynamical systems, Phys. Lett. A 88(1) (1982), pp. 1–3.
  • T. Miernowski, Dynamique discrétisée et stochastique, géométrie conforme, Ph.D. thesis, ÉNS de Lyon, 2005
  • T. Miernowski, Discrétisations des homéomorphismes du cercle, Ergod. Theory Dyn. Syst.26(6) (2006), pp. 1867–1903.
  • M. Monge, I. Nisoli, and F. Poloni, CompInvMeas-Python, Computation of Invariant Measures in Python, (2015). Available at https://bitbucket.org/fph/compinvmeas-python/src/master/
  • S.T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1991.
  • M. Scarowsky and A. Boyarsky, Long periodic orbits of the triangle map, Proc. Amer. Math. Soc.97(2) (1986), pp. 247–254.
  • The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.2), (2022). Available at https://www.sagemath.org
  • F. Vivaldi and I. Vladimirov, Pseudo-randomness of round-off errors in discretized linear maps on the plane, Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(11) (2003), pp. 3373–3393.
  • I. Vladimirov, Quantized linear systems on integer lattices: a frequency-based approach, CADSEM Reports, 96–032, 96–033, Parts I,II. Center for Applied Dynamical Systems and Environmental Modeling, Deakin University, Geelong, Australia, 1996.
  • I. Vladimirov, N. Kuznetsov, and P. Diamond, Frequency measurability, algebras of quasiperiodic sets and spatial discretizations of smooth dynamical systems, Math. Comput. Simul. 52(3–4) (2000), pp. 251–272.
  • V.V. Voevodin, The asymptotic distribution of round-off errors in linear transformations, Ž. Vyčisl. Mat I Mat. Fiz. 7 (1967), pp. 965–976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.