16,551
Views
86
CrossRef citations to date
0
Altmetric
Articles

Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Pages S28-S38 | Received 30 Apr 2018, Accepted 11 Nov 2018, Published online: 13 Dec 2018

References

  • Alexander, P., Brown, C., Arneth, A., Finnigan, J., & Rounsevell, M. D. A. (2016). Human appropriation of land for food: The role of diet. Global Environmental Change, 41, 88–98. doi: 10.1016/j.gloenvcha.2016.09.005
  • Azevedo, I. M. L. (2014). Consumer end-use energy efficiency and rebound effects. Annual Review of Environment and Resources, 39, 393–418. doi: 10.1146/annurev-environ-021913-153558
  • Barker, T., Dagoumas, A., & Rubin, J. (2009). The macroeconomic rebound effect and the world economy. Energy Efficiency, 2, 411–427. doi: 10.1007/s12053-009-9053-y
  • Barnes, M. L., Lynham, J., Kalberg, K., & Leung, P. (2016). Social networks and environmental outcomes. Proceedings of the National Academy of Sciences of the United States of America, 113, 6466–6471. Retrieved from http://www.pnas.org/lookup/doi/10.1073/pnas.1523245113
  • Baroni, L., Cenci, L., Tettamanti, M., & Berati, M. (2006). Evaluating the environmental impact of various dietary patterns combined with different food production systems. European Journal of Clinical Nutrition, 61, 279. doi: 10.1038/sj.ejcn.1602522
  • Beylot, A., Vaxelaire, S., & Villeneuve, J. (2015). Reducing gaseous emissions and resource consumption embodied in French final demand: How much can waste policies contribute? Journal of Industrial Ecology. doi: 10.1111/jiec.12318
  • Bin, S., & Dowlatabadi, H. (2005). Consumer lifestyle approach to US energy use and the related CO2 emissions. Energy Policy, 33, 197–208. Retrieved from http://www.sciencedirect.com/science/article/B6V2W-49XPHSD-2/2/2637d35c29d55f04ed2cd4b401f22af1 doi: 10.1016/S0301-4215(03)00210-6
  • Chester, M., Pincetl, S., Elizabeth, Z., Eisenstein, W., & Matute, J. (2013). Infrastructure and automobile shifts: Positioning transit to reduce life-cycle environmental impacts for urban sustainability goals. Environmental Research Letters, 8, 015041. doi: 10.1088/1748-9326/8/1/015041
  • Coley, D. A., Goodliffe, E., & Macdiarmid, J. (1998). The embodied energy of food: The role of diet. Energy Policy, 26, 455–459. doi: 10.1016/S0301-4215(97)00159-6
  • Creutzig, F., Fernandez, B., Haberl, H., Khosla, R., Mulugetta, Y., & Seto, K. C. (2016). Beyond technology: Demand-side solutions for climate change mitigation. Annual Review of Environment and Resources, 41, 173–198. doi: 10.1146/annurev-environ-110615-085428
  • Creutzig, F., Roy, J., Lamb, W. F., Azevedo, I. M. L., Bruine de Bruin, W., Dalkmann, H., … Weber, E. U. (2018). Towards demand-side solutions for mitigating climate change. Nature Climate Change, 8, 268–271. doi: 10.1038/s41558-018-0121-1
  • Davis, S. J., Peters, G. P., & Caldeira, K. (2011). The supply chain of CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18554–188559. doi: 10.1073/pnas.1107409108
  • de Koning, A., Bruckner, M., Lutter, S., Wood, R., Stadler, K., & Tukker, A. (2015). Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecological Economics, 116, 289–299. Retrieved from http://www.sciencedirect.com/science/article/pii/S0921800915002232 doi: 10.1016/j.ecolecon.2015.05.008
  • Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C., & Vandenbergh, M. P. (2009). Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proceedings of the National Academy of Sciences of the United States of America, 106, 18452–18456. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19858494 doi: 10.1073/pnas.0908738106
  • Duarte, R., Feng, K., Hubacek, K., Sánchez-Chóliz, J., Sarasa, C., & Sun, L. (2015). Modeling the carbon consequences of pro-environmental consumer behavior. Applied Energy, 184, 1207–1216. doi: 10.1016/j.apenergy.2015.09.101
  • European Environment Agency. (2008). Greenhouse gas emission trends and projections in Europe 2011 – tracking progress towards Kyoto and 2020 targets.
  • Fawcett, A. A., Iyer, G. C., Clarke, L. E., Edmonds, J. A., Hultman, N. E., McJeon, H. C., … Shi, W. (2015). Can Paris pledges avert severe climate change? Science 80, 350.
  • Font Vivanco, D., Kemp, R., & van der Voet, E. (2016). How to deal with the rebound effect? A policy-oriented approach. Energy Policy, 94, 114–125. Retrieved from http://www.sciencedirect.com/science/article/pii/S0301421516301586 doi: 10.1016/j.enpol.2016.03.054
  • Gardner, G. T., & Stern, P. C. (2008). The short list - the most effective actions US households can take to curb climate change. Environment, 50, 12–24.
  • Greening, L. A. (2004). Effects of human behavior on aggregate carbon intensity of personal transportation: Comparison of 10 OECD countries for the period 1970-1993. Energy Economics, 26, 1–30. doi: 10.1016/j.eneco.2003.05.001
  • Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 80, 344.
  • Hertwich, E. G. (2005). Consumption & the rebound effect: An industrial ecology perspective. Journal of Industrial Ecology, 9, 85–98. doi: 10.1162/1088198054084635
  • Hilborn, R., Banobi, J., Hall, S., Pucylowski, T., & Walsworth, T. (2018). The environmental cost of animal source foods. Frontiers in Ecology and the Environment. doi:10.1002/fee.1822
  • Hoekstra, A. Y., & Wiedmann, T. O. (2014). Humanity’s unsustainable environmental footprint. Science, 344, 1114–1117. Retrieved from http://www.sciencemag.org/content/344/6188/1114.abstract doi: 10.1126/science.1248365
  • Hoolohan, C., Berners-Lee, M., McKinstry-West, J., & Hewitt, C. N. (2013). Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy, 63, 1065–1074. doi:10.1016/j.enpol.2013.09.046
  • International Energy Agency. (1997). Transport, energy and climate change.
  • Ivanova, D., Stadler, K., Steen-Olsen, K., Wood, R., Vita, G., Tukker, A., & Hertwich, E. G. (2015). Environmental impact assessment of household consumption. Journal of Industrial Ecology, 20, 526–536. doi: 10.1111/jiec.12371
  • Ivanova, D., Vita, G., Steen-Olsen, K., Stadler, K., Melo, P. C., Wood, R., … Hertwich, E. G. (2017). Mapping the carbon footprint of EU regions. Environmental Research Letters, 12. doi: 10.1088/1748-9326/aa6da9
  • Jones, C., & Kammen, D. M. (2014). Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environmental Science & Technology, 48, 895–902. doi: 10.1021/es4034364
  • Jones, C. M., & Kammen, D. M. (2011). Quantifying carbon footprint reduction opportunities for U.S. households and communities. Environmental Science & Technology, 45, 4088–4095. doi: 10.1021/es102221h
  • Jones, C. M., Wheeler, S. M., & Kammen, D. M. (2018). Carbon footprint planning: Quantifying local and state mitigation opportunities for 700 California cities. Urban Plan, 3. Retrieved from https://www.cogitatiopress.com/urbanplanning/article/view/1218
  • Koide, R., & Akenji, L. (2017). Assessment of policy integration of sustainable consumption and production into national policies. Resources 6(4), 48.
  • Lacroix, K. (2018). Comparing the relative mitigation potential of individual pro-environmental behaviors. Journal of Cleaner Production, 195, 1398–1407. Retrieved from http://www.sciencedirect.com/science/article/pii/S0959652618313982 doi: 10.1016/j.jclepro.2018.05.068
  • Lave, L. B., Hendrickson, C., & McMichael, F. C. (1994). Recycling decisions and green design. Environmental Science & Technology, 28, 19A–24A. doi: 10.1021/es00050a001
  • Leontief, W. (1974). Structure of the world economy. American Economic Review, LXIV, 823–834.
  • Liu, J., Daily, G. C., Ehrlich, P. R., & Luck, G. W. (2003). Effects of household dynamics on resource consumption and biodiversity. Nature, 421, 530–533. doi: 10.1038/nature01359
  • McKenna, R., Hofmann, L., Merkel, E., Fichtner, W., & Strachan, N. (2016). Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake. Energy Policy, 97, 13–26. doi: 10.1016/j.enpol.2016.06.042
  • Miller, R. E., & Blair, P. D. (2010). Input-output analysis: Foundations and extensions. Englewood Cliffs, NJ: Prentice-Hall.
  • Minx, J. C., Weidmann, T., Wood, R., Lenzen, M., Peters, G. P., Owen, A., … Ackerman, F. (2009). Input-output analysis and carbon footprinting: An overview of applications. Economic Systems Research, 21, 187–216. doi: 10.1080/09535310903541298
  • Moran, D., Kanemoto, K., Jiborn, M., Wood, R., Többen, J., & Seto, K. C. (2018). Carbon footprints of 13000 cities. Environmental Research Letters, 13, 064041. Retrieved from http://stacks.iop.org/1748-9326/13/i=6/a=064041?key=crossref.db7049832435becaa9c43b1fd7349177 doi: 10.1088/1748-9326/aac72a
  • Munksgaard, J., Pedersen, K. A., & Wier, M. (2000). Impact of household consumption on CO2 emissions. Energy Economics, 22, 423–440. doi: 10.1016/S0140-9883(99)00033-X
  • Niamir, L., Filatova, T., Voinov, A., & Bressers, H. (2018). Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy, 118, 325–345. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301421518301782 doi: 10.1016/j.enpol.2018.03.045
  • O’Rourke, D. (2014). The science of sustainable supply chains. Science, 344, 1124–1127. Retrieved from http://www.sciencemag.org/content/344/6188/1124.abstractN2 - Recent advances in the science and technology of global supply chain management offer near–real-time demand-response systems for decision-makers across production networks. Technology is helping
  • Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972. Retrieved from http://www.sciencemag.org/content/305/5686/968.abstract doi: 10.1126/science.1100103
  • Peters, G. P., Davis, S. J., & Andrew, R. M. (2012). A synthesis of carbon in international trade. Biogeosciences Discuss, 9, 3247–3276. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84861649153&partnerID=40&md5=60f9db612d4b9b2865cce3b48afa3ee5 doi: 10.5194/bg-9-3247-2012
  • Peters, G. P., & Hertwich, E. G. (2006). The application of multi-regional input-output analysis to industrial ecology – evaluating trans-boundary environmental impacts. In S. Suh (Ed.), Handbook of input-output analysis in industrial ecology (pp. 847–863). 2013.
  • Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360, 987–992. Retrieved from http://science.sciencemag.org/content/360/6392/987.abstract doi: 10.1126/science.aaq0216
  • Ripple, W. J., Smith, P., Haberl, H., Montzka, S. A., McAlpine, C., & Boucher, D. H. (2013). Ruminants, climate change and climate policy. Nature Climate Change, 4(2). doi: 10.1038/nclimate2081
  • Roth, A., & Kåberger, T. (2002). Making transport systems sustainable. Journal of Cleaner Production, 10, 361–371. doi: 10.1016/S0959-6526(01)00052-X
  • Schanes, K., Giljum, S., & Hertwich, E. (2016). Low carbon lifestyles: A framework to structure consumption strategies and options to reduce carbon footprints. Journal of Cleaner Production, 139, 1033–1043. Retrieved from http://www.sciencedirect.com/science/article/pii/S095965261631318X doi: 10.1016/j.jclepro.2016.08.154
  • Scholz, K., Eriksson, M., & Strid, I. (2015). Carbon footprint of supermarket food waste. Resources, Conservation and Recycling, 94, 56–65. doi: 10.1016/j.resconrec.2014.11.016
  • Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., … Tiwari, G. (2014). Transport climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on climate change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J. C. Minx (Eds.). Cambridge: Cambridge University Press.
  • Sorrell, S. (2009). Jevons’ paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, 37, 1456–1469. Retrieved from http://www.sciencedirect.com/science/article/B6V2W-4VDGTNF-1/2/16a2cbbf10e85057656fb75ad7ca17aa doi: 10.1016/j.enpol.2008.12.003
  • Springmann, M., Mason, D., Croz, D., Robinson, S., Wiebe, K., Godfray, H. C. J., Rayner M., & Scarborough P. (2016). Mitigation potential and global health impacts from emissions pricing of food commodities. Nature Climate Change. Advance on online. doi.org/10.1038/nclimate3155
  • Stavros, A., Marco, S., Kate, S., John, B., & Andy, G. (2016). Consumption-based carbon accounting: Does it have a future? Wiley Interdisciplinary Reviews: Climate Change, 8, e438. doi.org/10.1002/wcc.438
  • Stehfest, E., Bouwman, L., van Vuuren, D., den Elzen, M. J., Eickhout, B., & Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95, 83–102. doi: 10.1007/s10584-008-9534-6
  • Steininger, K. W., Munoz, P., Karstensen, J., Peters, G. P., Strohmaier, R., & Velázquez, E. (2018). Austria’s consumption-based greenhouse gas emissions: Identifying sectoral sources and destinations. Global Environmental Change, 48, 226–242. Retrieved from https://www.sciencedirect.com/science/article/pii/S0959378017304508?via%3Dihub doi: 10.1016/j.gloenvcha.2017.11.011
  • Suh, S., Lenzen, M., Treloar, G. J., Hondo, H., Horvath, A., Huppes, G., … Norris, G. (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environmental Science & Technology, 38, 657–664. doi: 10.1021/es0263745
  • Tukker, A., Goldbohm, R. A., de Koning, A., Verheijden, M., Kleijn, R., Wolf, O., … Rueda-Cantuche, J. M. (2011). Environmental impacts of changes to healthier diets in Europe. Ecological Economics, 70, 1776–1788. doi: 10.1016/j.ecolecon.2011.05.001
  • van Brandstedt, P., & Basshuysen, E. (2018). Attributing and calculating responsibility for reproductive choices: Comment on Wynes and Nicholas. Environmental Research Letters. Retrieved from http://iopscience.iop.org/10.1088/1748-9326/aab213
  • Vranken, L., Avermaete, T., Petalios, D., & Mathijs, E. (2014). Curbing global meat consumption: Emerging evidence of a second nutrition transition. Environmental Science & Policy, 39, 95–106. doi: 10.1016/j.envsci.2014.02.009
  • Westhoek, H., Lesschen, J. P., Rood, T., Wagner, S., De Marco, A., Murphy-Bokern, D., … Oenema, O. (2014). Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Global Environmental Change, 26, 196–205. doi: 10.1016/j.gloenvcha.2014.02.004
  • White, R. R., & Hall, M. B. (2017). Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proceedings of the National Academy of Sciences of the United States of America, 114, E10301–E10308. Retrieved from http://www.pnas.org/content/114/48/E10301.abstract doi: 10.1073/pnas.1707322114
  • Wood, R., Moran, D., Stadler, K., Ivanova, D., Steen-Olsen, K., Tisserant, A., & Hertwich, E. (2017). Prioritizing consumption-based carbon policy based on the evaluation of mitigation potential using input-output methods. Journal of Industrial Ecology, 22, 540–552. doi: /10.1111/jiec.12702
  • Wynes, S., & Nicholas, K. A. (2017). The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environmental Research Letters, 12, 074024. doi:10.1088/1748-9326/aa7541
  • Zacarias-Farah, A., & Geyer-Allély, E. (2003). Household consumption patterns in OECD countries: Trends and figures. Journal of Cleaner Production, 11, 818–827. doi: 10.1016/S0959-6526(02)00155-5