10,244
Views
49
CrossRef citations to date
0
Altmetric
Synthesis Articles

Potential implications of carbon dioxide removal for the sustainable development goals

ORCID Icon, ORCID Icon & ORCID Icon
Pages 678-698 | Received 13 Feb 2020, Accepted 23 Oct 2020, Published online: 24 Nov 2020

References

  • Ahimbisibwe, V., Auch, E., Groeneveld, J., Tumwebaze, S. B., & Berger, U. (2019). Drivers of household decision-making on land-use transformation: An example of woodlot establishment in Mmasindi district, Uganda. Forests, 10(8), 619–638. https://doi.org/10.3390/f10080619
  • Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600–604. https://doi.org/10.1126/science.aac8083
  • Ammar, Y., Joyce, S., Norman, R., Wang, Y., & Roskilly, A. (2012). Low grade thermal energy sources and uses from the process industry in the UK. Applied Energy, 89(1), 3–20. https://doi.org/10.1016/j.apenergy.2011.06.003
  • Aumont, O., & Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20(2), 1–15. https://doi.org/10.1029/2005GB002591
  • Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. (2016). Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems and Environment, 233, 308–317. https://doi.org/10.1016/j.agee.2016.09.016
  • Beal, C.M., Archibald, I., Huntley, M.E., Greene, C. H., & Johnson, Z. I. (2018). Integrating Algae with bioenergy carbon capture and storage (ABECCS) increases sustainability. Earth’s Future, 6(3), 524–542. https://doi.org/10.1002/2017EF000704
  • Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., Bird, M., Kantzas, E., Taylor, L. L., Sarkar, B., Kelland, M., DeLucia, E., Kantola, I., Müller, C., Rau, G., & Hansen, J. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 4(3), 138–147. https://doi.org/10.1038/s41477-018-0108-y
  • Beuttler, C., Charles, L., & Wurzbacher, J. (2019). The role of direct Air capture in mitigation of anthropogenic greenhouse gas emissions. Frontiers in Climate, 1(10), 1–7. https://doi.org/10.3389/fclim.2019.00010
  • Biermann, F., Kanie, N., & Kim, R. E. (2017). Global governance by goal-setting: The novel approach of the UN sustainable development Goals. Current Opinion in Environmental Sustainability, 26-27, 26–31. https://doi.org/10.1016/j.cosust.2017.01.010
  • Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., … Wagener, T. (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139), 1070–1074. https://doi.org/10.1038/nature05700
  • Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinski, S., Biewald, A., Lotze-Campen, H., Weindl, I., Gerten, D., & Stevanovic, M. (2016). Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenergy, 8(1), 11–24. https://doi.org/10.1111/gcbb.12226
  • Bozzi, E., Genesio, L., Toscano, P., Pieri, M., & Miglietta, F. (2015). Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes. Environmental Research Letters, 10(8), 1–10. https://doi.org/10.1088/1748-9326/10/8/084014
  • Breetz, H. (2020). Do big goals lead to bad policy? How policy feedback explains the failure and success of cellulosic biofuel in the United States. Energy Research & Social Science, 69, 101755. https://doi.org/10.1016/j.erss.2020.101755
  • Buck, H. J, Gammon, A. R, & Preston, C. J. (2014). Gender and geoengineering. Hypatia, 29(3), 651–669.
  • Bui, M., & Mac Dowell, N. (eds.). (2019). Carbon capture and storage, energy and environment Series (Vol. 26). Royal Society of Chemistry.
  • Campagnolo, L., & Davide, M. (2019). Can the Paris deal boost SDGs achievement? An assessment of climate mitigation co-benefits or side-effects on poverty and inequality. World Development, 122, 96–109. https://doi.org/10.1016/j.worlddev.2019.05.015
  • Cao, L., & Caldeira, K. (2010). Can ocean iron fertilization mitigate ocean acidification? Climatic Change, 99(1-2), 303–311. https://doi.org/10.1007/s10584-010-9799-4
  • Celia, M. A. (2017). Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water Resources Research, 53(5), 3527–3533. https://doi.org/10.1002/2017WR020841
  • Chabbi, A., Lehmann, J., Ciais, P., Loescher, H. W., Cotrufo, M. F., Don, A., SanClements, M., Schipper, L., Six, J., Smith, P., & Rumpel, C. (2017). Aligning agriculture and climate policy. Nature Climate Change, 7(5), 307–309. https://doi.org/10.1038/nclimate3286
  • Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification-A critical review. Science of the Total Environment, 581-582, 601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169
  • Dang, T., Van Der Zouwen, M., & Arts, B. (2019). Challenges of forest governance: The case of forest rehabilitation in Vietnam. Public Organization Review, 19(4), 425–452. https://doi.org/10.1007/s11115-018-0414-x
  • de Baar, H., Gerringa, L., Laan, P., & Timmermans, K. (2008). Efficiency of carbon removal per added iron in ocean iron fertilization. Marine Ecological Progress Series, 364, 269–282. https://doi.org/10.3354/meps07548
  • Denman, K. L. (2008). Climate change, ocean processes and ocean iron fertilization. Marine Ecology Progress Series, 364, 219–225. https://doi.org/10.3354/meps07542
  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016b). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36–36. https://doi.org/10.1007/s13593-016-0372-z
  • Ding, H., Veit, P., Blackman, A., Gray, E., Reytar, K., Altamirano, J. C., & Hodgdon, B. (2016a). Climate benefits, tenure costs: The economic case for securing indigenous land rights in the Amazon. World Resources Institute.
  • Dooley, K., Christoff, P., & Nicholas, K. A. (2018). Co-producing climate policy and negative emissions: Trade-offs for sustainable land-use. Global Sustainability 1(3), 1–10. https://doi.org/10.1017/sus.2018.6
  • Dooley, K., & Kartha, S. (2018). Land-based negative emissions: Risks for climate mitigation and impacts on sustainable development. International Environmental Agreements, 18(1), 79–98. https://doi.org/10.1007/s10784-017-9382-9
  • EASAC. (2018). Negative emission technologies: What role in meeting Paris Agreement targets? EASAC policy report 35. European Academies’ Science Advisory Council.
  • EASAC. (2019). Forest bioenergy, carbon capture and storage, and carbon dioxide removal: An update? EASAC commentary. European Academies’ Science Advisory Council.
  • Fajardy, M., & Mac Dowell, N. (2017). Can BECCS deliver sustainable and resource efficient negative emissions?. Energy & Environmental Science, 10(6), 1389–1426.
  • Farley, K. A., Jobbágy, E. G., & Jackson, R. B. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11(10), 1565–1576. https://doi.org/10.1111/j.1365-2486.2005.01011.x
  • Feng, E. Y., Keller, D. P., Koeve, W., & Oschlies, A. (2016). Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environmental Research Letters, 11(7), 074008. https://doi.org/10.1088/1748-9326/11/7/074008
  • Forster, J., Vaughan, N., Gough, C., Lorenzoni, I., & Chilvers, J. (2020). Mapping feasibilities of greenhouse gas removal: Key issues, gaps and opening up assessments. Global Environmental Change, 63, 102073. https://doi.org/10.1016/j.gloenvcha.2020.102073
  • Fuso Nerini, F., Sovacool, B., Hughes, N., Cozzi, L., Cosgrave, E., Howells, M., Tavoni, M., Tomei, J., Zerriffi, H., & Milligan, B. (2019). Connecting climate action with other sustainable development Goals. Nature Sustainability, 2(8), 674–680. https://doi.org/10.1038/s41893-019-0334-y
  • Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M., van Vuuren, D. P., Canadell, J. G., Jackson, R. B., Milne, J., Moreira, J. R., Nakicenovic, N., Sharifi, A., & Yamagata, Y. (2016). Research priorities for negative emissions. Environmental Research Letters, 11(11), 115007. https://doi.org/10.1088/1748-9326/11/11/115007
  • Fuss, S., Lamb, W. F., Callaghan, M. W, Hilaire, J., Creutzig, F., Amann, T., Beringer, T., Garcia, W., Hartmann, J., Khanna, T, & Luderer, G. (2018). Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 13(6), 063002.
  • Gambhir, A., & Tavoni, M. (2019). Direct air carbon capture and sequestration: How it works and how it could contribute to climate-change mitigation. One Earth, 1(4), 405–409. https://doi.org/10.1016/j.oneear.2019.11.006
  • Gattuso, J.-P., Magnan, A. K., Bopp, L., Cheung, W. W. L., Duarte, C. M., Hinkel, J., Mcleod, E., Micheli, F., Oschlies, A., Williamson, P., Billé, R., Chalastani, V. I., Gates, R. D., Irisson, J.-O., Middelburg, J. J., Pörtner, H.-O., & Rau, G. H. (2018). Ocean solutions to address climate change and its effects on marine ecosystems. Frontiers in Marine Science, 5, 337. https://doi.org/10.3389/fmars.2018.00337
  • Genesio, L., Vaccari, F. P., & Miglietta, F. (2016). Black carbon aerosol from biochar threats its negative emission potential. Global Change Biology, 22(7), 2313–2314. https://doi.org/10.1111/gcb.13254
  • GESAMP. (2019). High level review of a wide range of proposed marine geoengineering techniques. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Working Group 41, International Maritime Organization.
  • Glewwe, P. (2005). The impact of child health and nutrition on education in developing countries: Theory, econometric issues, and recent empirical evidence. Food and Nutrition Bulletin, 26(2_suppl2), S235–S250. https://doi.org/10.1177/15648265050262S215
  • González, M. F., & Ilyina, T. (2016). Impacts of artificial ocean alkalinization on the carbon cycle and climate in earth system simulations. Geophysical Research Letters, 43(12), 6493–6502. https://doi.org/10.1002/2016GL068576
  • Gore, S., Renforth, P., & Perkins, R. (2019). The potential environmental response to increasing ocean alkalinity for negative emissions. Mitigation and Adaption Strategies on Global Change, 24(7), 1191–1211 https://doi.org/10.1007/s11027-018-9830-z
  • Gough, C., & Mander, S. (2019). Beyond social acceptability: Applying lessons from CCS social science to support deployment of BECCS. Current Sustainable/Renewable Energy Reports, 6(4), 116–123. https://doi.org/10.1007/s40518-019-00137-0
  • Güssow, K., Proelss, A., Oschlies, A., Rehdanz, K, & Rickels, W. (2010). Ocean iron fertilization: Why further research is needed. Marine Policy, 34(5), 911–918.
  • Gutiérrez Rodríguez, L., Hogarth, N. J., Zhou W., Xie C., Zhang K., & Putzel, L. (2016). China’s conversion of cropland to forest program: A systematic review of the environmental and socioeconomic effects. Environmental Evidence, 5(1). 21. https://doi.org/10.1186/s13750-016-0071-x
  • Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003
  • Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S. E., Collins, W. J., Comyn-Platt, E., Daioglou, V., Doelman, J. C., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C. P., Bastos, A., … Shu, S. (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/s41467-018-05340-z
  • Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf-Gladrow, D. A., Dürr, H. H., & Scheffran, J. (2013). Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Reviews of Geophysics, 51(2), 113–149. https://doi.org/10.1002/rog.20004
  • Heck, V., Gerten, D., Lucht, W., & Boysen, L. R. (2016). Is extensive terrestrial carbon dioxide removal a ‘green’ form of geoengineering? A global modelling study. Global and Planetary Change, 137, 123–130. https://doi.org/10.1016/j.gloplacha.2015.12.008
  • Henders, S., & Otswald, M. (2012). Forest carbon leakage quantification methods and their suitability for assessing leakage in REDD. Forests, 3(1), 33–58. https://doi.org/10.3390/f3010033
  • Hochman, G., Rajagopal, D, Timilsina, G, & Zilberman, D. (2014). Quantifying the causes of the global food commodity price crisis. Biomass and Bioenergy, 68, 106–114.
  • Honegger, M., & Reiner, D. (2018). The political economy of negative emissions technologies: Consequences for international policy design. Climate Policy, 18(3), 306–321. https://doi.org/10.1080/14693062.2017.1413322
  • Honegger, M., Derwent, H., Harrison, N., Michaelowa, A., & Schäfer, S. (2018). Carbon removal and solar geoengineering: Potential implications for delivery of the sustainable development goals. Carnegie Climate Geoengineering Governance Initiative, May 2018, New York, U.S.
  • Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., Dietrich, J. P., Klein, D., Kreidenweis, U., Müller, C., Rolinski, S., & Stevanovic, M. (2018). Large-scale bioenergy production: How to resolve sustainability trade-offs? Environmental Research Letters, 13(2), 024011. https://doi.org/10.1088/1748-9326/aa9e3b
  • ICEF. (2018). Direct capture of carbon dioxide. Roadmap. Innovation for Cool Earth Forum.
  • IPBES. (2019). Global Assessment Report on Biodiversity and Ecosystem Services.
  • IPCC. (2005). Special report on carbon dioxide capture and storage. Cambridge University Press.
  • IPCC. (2014). Climate change 2014: Mitigation of climate change. Contribution of Working group III to the FIFTH assessment report of the intergovernmental panel on climate change. Cambridge University Press.
  • IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press.
  • IPCC. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
  • Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J., Cook, C. W., Farley, K. A., Le Maitre, D. C., McCarl, B. A., & Murray, B. C. (2005). Trading water for carbon with biological carbon sequestration. Science, 310(5756), 1944–1947. https://doi.org/10.1126/science.1119282
  • Jeffery, S., Verheijen, F. G., van der Velde, M., & Bastos, A. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015
  • Jiang, X., Denef, K., Stewart, C. E., & Cotrufo, M. F. (2016). Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biology and Fertility of Soils, 52(1), 1–14. https://doi.org/10.1007/s00374-015-1047-7
  • Jones, G. A., & Warner, K. J. (2016). The 21st century population-energy-climate nexus. Energy Policy, 93, 206–212. https://doi.org/10.1016/j.enpol.2016.02.044
  • Kadlec, R., Knight, R., Cooper, P., Brix, H., Vymazal, J., & Haberl, R. (2000). Constructed wetlands for pollution control. IWA Publishers.
  • Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., Novak, J., & Rasse, D. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114–139. https://doi.org/10.3846/16486897.2017.1319375
  • Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P., & DeLucia, E. H. (2017). Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biology Letters, 13(4), 20160714. https://doi.org/10.1098/rsbl.2016.0714
  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development Goals. Soil, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016
  • Kline, K. L., Msangi, S., Dale, V. H., Woods, J., Souza, G., Osseweijer, P., Clancy, J. S., Hilbert, J. A., Johnson, F. X., McDonnell, P. C., & Mugera, H. K. (2017). Reconciling food security and bioenergy: Priorities for action. Gcb Bioenergy, 9(3), 557–576. https://doi.org/10.1111/gcbb.12366
  • Kreidenweis, U., Humpenöder, F., Stevanović, M., Bodirsky, B. L., Kriegler, E., Lotze-Campen, H., & Popp, A. (2016). Afforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects. Environmental Research Letters, 11(8), 1–11. https://doi.org/10.1088/1748-9326/11/8/085001
  • Kroeger, T., Escobedo, F. J., Hernandez, J. L., Varela, S., Delphin, S., Fisher, J. R., & Waldron, J. (2014). Reforestation as a novel abatement and compliance measure for ground-level ozone. Proceedings of the National Academy of Sciences, 111(40), E4204–E4213. https://doi.org/10.1073/pnas.1409785111
  • Lal, R. (2001). World cropland soils as a source or sink for atmospheric carbon. In advances in agronomy [D. Sparks, ed.], Academic Press, 71, 145–191. https://doi.org/10.1016/S0065-2113(01)71014-0
  • Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society of London B, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185
  • Lawter, A. R., Qafoku, N. P., Asmussen, R. M., Bacon, D. H., Zheng, L., & Brown, C. F. (2017). Risk of geologic sequestration of CO2 to groundwater aquifers: Current knowledge and remaining questions. Energy Procedia, 114, 3052–3059. https://doi.org/10.1016/j.egypro.2017.03.1433
  • Le, H. D., Smith, C., Herbohn, J., & Harrison, S. (2012). More than just trees: Assessing reforestation success in tropical developing countries. Journal of Rural Studies, 28(1), 5–19. https://doi.org/10.1016/j.jrurstud.2011.07.006
  • Lehmann, J., Czimczik, C., Laird, D., & Sohi, S. (2015). Persistence of biochar in soil. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 235–282). Taylor and Francis.
  • Lipponen, J., McCulloch, S., Keeling, S., Stanley, T., Berghout, N., & Berly, T. (2017). The politics of large-scale CCS deployment. Energy Procedia, 114, 7581–7595. https://doi.org/10.1016/j.egypro.2017.03.1890
  • Liu, J., Hull, V., Godfray, H., Tilman, D., Gleick, P., Hoff, H., Pahl-Wostl, C., Xu, Z., Min, G., Sun, J., & Li, S. (2018). Nexus approaches to global sustainable development. Nature Sustainability, 1(9), 466–476. https://doi.org/10.1038/s41893-018-0135-8
  • Liu, H., & Liang, X. (2011). Strategy for promoting low-carbon technology transfer to developing countries: The case of CCS. Energy Policy, 39(6), 3106–3116. https://doi.org/10.1016/j.enpol.2011.02.051
  • Lorenz, K, & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A review Agron. Sustain. Dev, 34, 443–454.
  • Maes, M. J., Jones, K. E., Toledano, M. B., & Milligan, B. (2019). Mapping synergies and trade-offs between urban ecosystems and the sustainable development goals. Environmental Science & Policy, 93, 181–188. https://doi.org/10.1016/j.envsci.2018.12.010
  • Martin, P., Loeff, M. R., Cassar, N., Vandromme, P., d'Ovidio, F., Stemmann, L., Rengarajan, R., Soares, M., González, H. E., Ebersbach, F., Lampitt, R. S., Sanders, R., Barnett, B. A., Smetacek, V., & Naqvi, S. W. A. (2013). Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX. Global Biogeochemical Cycles, 27(3), 871–881. https://doi.org/10.1002/gbc.20077
  • Matear, R. J., & Elliott, B. (2004). Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. Journal of Geophysical Research: Oceans, 109(C4), C04001. https://doi.org/10.1029/2000JC000321
  • Michaelowa, A., Allen, M., & Sha, F. (2018). Policy instruments for limiting global temperature rise to 1.5° C–can humanity rise to the challenge? Climate Policy, 18(3), 275–286. https://doi.org/10.1080/14693062.2018.1426977
  • Michaelowa, A., Shishlov, I., & Brescia, D. (2019). Evolution of international carbon markets: Lessons for the Paris Agreement. WIRES Climate Change, 10(6), e613. https://doi.org/10.1002/wcc.613
  • Morán-Ordóñez, A., Whitehead, A. L., Luck, G. W., Cook, G. D., Maggini, R., Fitzsimons, J. A., & Wintle, B. A. (2017). Analysis of trade-offs between biodiversity, carbon farming and agricultural development in Northern Australia reveals the benefits of strategic planning. Conservation Letters, 10(1), 94–104. https://doi.org/10.1111/conl.12255
  • Nagelkerken, I. S. J. M., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., Meynecke, J. O., Pawlik, J., Penrose, H. M., Sasekumar, A., & Somerfield, P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89(2), 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007
  • National Academies of Science. (2015). Climate intervention: Carbon dioxide removal and reliable sequestration. National Academies Press.
  • Nemet, G. F., Callaghan, M. W., Creutzig, F., Fuss, S., Hartmann, J., Hilaire, J., Lamb, W. F., Minx, J. C., Rogers, S., & Smith, P. (2018). Negative emissions—part 3: Innovation and upscaling. Environmental Research Letters, 13(6), 063003. https://doi.org/10.1088/1748-9326/aabff4
  • Nerini, F. F., Tomei, J., To, L. S., Bisaga, I., Parikh, P., Black, M., Borrion, A., Spataru, C., Castán Broto, V., Anandarajah, G., Milligan, B., & Mulugetta, Y. (2018). Mapping synergies and trade-offs between energy and the sustainable development Goals. Nature Energy, 3(1), 10–15. https://doi.org/10.1038/s41560-017-0036-5
  • Nilsson, M., Chisholm, E., Griggs, D., Howden-Chapman, P., McCollum, D., Messerli, P., … Stafford-Smith, M. (2018). Mapping interactions between the sustainable development goals: Lessons learned and ways forward. Sustainability Science, 13(6), 1489–1503. https://doi.org/10.1007/s11625-018-0604-z
  • Nosetto, M. D., Jobbágy, E. G., Brizuela, A. B., & Jackson, R. B. (2012). The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems & Environment, 154, 2–11. https://doi.org/10.1016/j.agee.2011.01.008
  • Olgun, N., Duggen, S., Langmann, B., Hort, M., Waythomas, C. F., Hofmann, L., & Croot, P. (2013). Geochemical evidence of oceanic iron fertilization by the Kasatochi volcanic eruption in 2008 and the potential impacts on Pacific sockeye salmon. Marine Ecology Progress Series, 488, 81–88. https://doi.org/10.3354/meps10403
  • Palmer-Wilson, K., Donald, J., Robertson, B., Lyseng, B., Keller, V., Fowler, M., Wade, C., Scholtysik, S., Wild, P., & Rowe, A. (2019). Impact of land requirements on electricity system decarbonisation pathways. Energy Policy, 129, 193–205. https://doi.org/10.1016/j.enpol.2019.01.071
  • Pasgaard, M., Sun, Z., Müller, D., & Mertz, O. (2016). Challenges and opportunities for REDD+: A reality check from perspectives of effectiveness, efficiency and equity. Environmental Science & Policy, 63, 161–169. https://doi.org/10.1016/j.envsci.2016.05.021
  • Patra, A. K., Gautam, S., & Kumar, P. (2016). Emissions and human health impact of particulate matter from surface mining operation—A review. Environmental Technology & Innovation, 5, 233–249. https://doi.org/10.1016/j.eti.2016.04.002
  • Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., van Groenigen, K. J., Lee, J., van Gestel, N., Six, J., Venterea, R. T., & van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020
  • Pollard, R. T., Salter, I., Sanders, R. J., Lucas, M. I., Moore, C. M., Mills, R. A., Statham, P. J., Allen, J. T., Baker, A. R., Bakker, D. C. E., Charette, M. A., Fielding, S., Fones, G. R., French, M., Hickman, A. E., Holland, R. J., Hughes, J. A., Jickells, T. D., Lampitt, R. S., … Zubkov, M. V. (2009). Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature, 457(7229), 577–580. https://doi.org/10.1038/nature07716
  • Possas, C., de Souza Antunes, A., Lima de Magalhães, J., Lins Mendes, F., Pinheiro Ramos, M., De Simone Morais, J., & Homma, A. (2020). Vaccines: Biotechnology market, coverage, and regulatory challenges for achieving sustainable development Goals. In C. Keswani (Ed.), Bioeconomy for sustainable development (pp. 279–301). Springer.
  • Pourhashem, G., Hung, S. Y., Medlock, K. B., & Masiello, C. A. (2019). Policy support for biochar: Review and recommendations. GCB Bioenergy, 11(2), 364–380. https://doi.org/10.1111/gcbb.12582
  • Powlson, D., Stirling, C., Jat, M., Gerard, B., Palm, C., Sanchez, P., & Cassman, K. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678–683. https://doi.org/10.1038/nclimate2292
  • Raupach, M. R., Gloor, M., Sarmiento, J. L., Canadell, J. G., Frölicher, T. L., Gasser, T., Houghton, R. A., Le Quéré, C., & Trudinger, C. M. (2014). The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences (online), 11(13), 3453–3475. https://doi.org/10.5194/bg-11-3453-2014
  • Ravi, S., Sharratt, B. S., Li, J., Olshevski, S., Meng, Z., & Zhang, J. (2016). Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential. Scientific Reports, 6(1), 1–7. https://doi.org/10.1038/s41598-016-0001-8
  • Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A. C., & Tavoni, M. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 10(1), 1–12. https://doi.org/10.1038/s41467-019-10842-5
  • Robertson A, I., & Phillips M, J. (1995). Mangroves as filters of shrimp pond effluent: Predictions and biogeochemical research needs. Hydrobiologia, 295(1-3), 311–321. https://doi.org/10.1007/BF00029138
  • Rogelj, J., Luderer, G., Pietzcker, R., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Climate Change, 5(6), 519–527. https://doi.org/10.1038/nclimate2572
  • Ronnback, P. (1999). The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological Economics, 29(2), 235–252. https://doi.org/10.1016/S0921-8009(99)00016-6
  • Rouleau, M., & Zupko, R. J. (2019). Agent-based modeling for bioenergy sustainability assessment. Landscape and Urban Planning, 188, 54–63. https://doi.org/10.1016/j.landurbplan.2019.04.019
  • Royal Society. (2009). Geoengineering the climate — science, governance and uncertainty. Royal Society Policy document 10/09. The Royal Society.
  • Royal Society. (2018). Greenhouse gas removal. The Royal Society.
  • Russell, L. M., Rasch, P. J., Mace, G. M., Jackson, R. B., Shepherd, J., Liss, P., Leinen, M., Schimel, D., Vaughan, N. E., Janetos, A. C., Boyd, P. W., Norby, R. J., Caldeira, K., Merikanto, J., Artaxo, P., Melillo, J., & Morgan, M. G. (2012). Ecosystem impacts of geoengineering: A review for developing a science plan. Ambio, 41(4), 350–369. https://doi.org/10.1007/s13280-012-0258-5
  • Schäfer, S., Lawrence, M., Stelzer, H., Born, W., Low, S., Aaheim, A., … Vaughan, N. (2015). The European transdisciplinary assessment of climate engineering (EuTRACE): removing greenhouse gases from the atmosphere and reflecting sunlight away from earth. EUTRACE project.
  • Sinha, A., Darunte, L. A., Jones, C. W., Realff, M. J., & Kawajiri, Y. (2017). Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101 (Cr)-PEI-800 and mmen-Mg2 (dobpdc) MOF adsorbents. Industrial & Engineering Chemistry Research, 56(3), 750–764. https://doi.org/10.1021/acs.iecr.6b03887
  • Skagestad, R., Haugen, H. A., & Mathisen, A. (2015). CCS case synthesis - Final Report. NORDICCS Technical Report, D3.14.1501/D14. SINTEF.
  • Smith, P., Adams, J., Beerling, D. J., Beringer, T., Calvin, K. V., Fuss, S., Griscom, B., Hagemann, N., Kammann, C., Kraxner, F., & Minx, J. C. (2019). Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations sustainable development goals. Annual Review of Environment and Resources, 44(1), 255–286. https://doi.org/10.1146/annurev-environ-101718-033129
  • Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., … Edmonds, J. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42. https://doi.org/10.1038/nclimate2870
  • Smith, P., Haberl, H., Popp, A., Erb, K.-h., Lauk, C., Harper, R., Tubiello, F. N., de Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Mbow, C., … Rose, S. (2013). Goals? Global Change Biology, 19(8), 2285–2302. https://doi.org/10.1111/gcb.12160
  • Smith, L. J., & Torn, M. S. (2013). Ecological limits to terrestrial biological carbon dioxide removal. Climatic Change, 118(1), 89–103. https://doi.org/10.1007/s10584-012-0682-3
  • Stafford-Smith, M., Griggs, D., Gaffney, O., Ullah, F., Reyers, B., Kanie, N., Stigson, B., Shrivastava, P., Leach, M., & O'Connell, D. (2017). Integration: The key to implementing the sustainable development goals. Sustainability Science, 12(6), 911–919. https://doi.org/10.1007/s11625-016-0383-3
  • Streck, C., & Scholz, S. M. (2006). The role of forests in global climate change: Whence we come and where we go. International Affairs, 82(5), 861–879. https://doi.org/10.1111/j.1468-2346.2006.00575.x
  • Strefler, J., Amann, T., Bauer, N., Kriegler, E., & Hartmann, J. (2018). Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters, 13, 1–10. https://doi.org/10.1088/1748-9326/aaa9c4
  • Strong, A. L., Cullen, J. J., & Chisholm, S. W. (2009). Ocean fertilization: Science, policy, and commerce. Oceanography, 22(3), 236–261. https://doi.org/10.5670/oceanog.2009.83
  • Thiele, L. P. (2019). Geoengineering and sustainability. Environmental Politics, 28(3), 460–479. https://doi.org/10.1080/09644016.2018.1449602
  • Torvanger, A. (2019). Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement. Climate Policy, 19(3), 329–341. https://doi.org/10.1080/14693062.2018.1509044
  • Tsige, M., Synnevåg, G., & Aune, J. B. (2020). Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian women farmers. Scientific African, 7, e00250. https://doi.org/10.1016/j.sciaf.2019.e00250
  • UN Environment. (2019). Emissions gap report 2019, United Nations Environment Program.
  • Urban, F. R. M. J., Benders, R. M. J., & Moll, H. C. (2007). Modelling energy systems for developing countries. Energy Policy, 35(6), 3473–3482. https://doi.org/10.1016/j.enpol.2006.12.025
  • van Vuuren, D. P., Stehfest, E., Gernaat, D. E., Van Den Berg, M., Bijl, D. L., De Boer, H. S., & Hof, A. F. (2018). Alternative pathways to the 1.5 C target reduce the need for negative emission technologies. Nature Climate Change, 8(5), 391–397. https://doi.org/10.1038/s41558-018-0119-8
  • Vaughan, N., & Lenton, T. (2011). A review of climate geoengineering proposals. Climatic Change, 109(3-4), 745–790. https://doi.org/10.1007/s10584-011-0027-7
  • Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., & Bond, W. J. (2015). Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience, 65(10), 1011–1018. https://doi.org/10.1093/biosci/biv118
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., & Nerini, F. F. (2020). The role of artificial intelligence in achieving the sustainable development Goals. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-019-14108-y
  • Volk, T., & Hoffert, M. I. (1985). Ocean carbon pumps, analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Geophysical Monographs, 32, 99–110. https://doi.org/10.1029/GM032p0099
  • Waisman, H., De Coninck, H., & Rogelj, J. (2019). Key technological enablers for ambitious climate goals: Insights from the IPCC special report on global warming of 1.5° C. Environmental Research Letters, 14(11), 111001. https://doi.org/10.1088/1748-9326/ab4c0b
  • Wang, C., Malik, A., Wang, Y., Chang, Y., Lenzen, M., Zhou, D., Pang, M., & Huang, Q. (2020). The social, economic, and environmental implications of biomass ethanol production in China: A multi-regional input-output-based hybrid LCA model. Journal of Cleaner Production, 249, 119326. https://doi.org/10.1016/j.jclepro.2019.119326
  • WHO, WMO. (2012). Atlas of health and climate. WMO-No. 1098, World Health Organization and World Meteorological Organization.
  • Wilkin, R. T., & DiGiulio, D. C. (2010). Geochemical impacts to groundwater from geologic carbon sequestration: Controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling. Environmental Science & Technology, 44(12), 4821–4827. https://doi.org/10.1021/es100559j
  • Wood, S. L., Jones, S. K., Johnson, J. A., Brauman, K. A., Chaplin-Kramer, R., Fremier, A., Girvetz, E., Gordon, L. J., Kappel, C. V., Mandle, L, & Mulligan, M. (2018). Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem services, 29, 70–82.
  • Wright, J. A., DiNicola, A., & Gaitan, E. (2000). Latin American forest plantations: Opportunities for carbon sequestration, economic development, and financial returns. Journal of Forestry, 98, 20–23. https://doi.org/10.1093/jof/98.9.20
  • Yamagata, Y., Hanasaki, N., Ito, A., Kinoshita, T., Murakami, D., & Zhou, Q. (2018). Estimating water–food–ecosystem trade-offs for the global negative emission scenario (IPCC-RCP2.6). Sustainability Science, 13(2), 301–313. https://doi.org/10.1007/s11625-017-0522-5
  • Yargicoglu, E. N., Sadasivam, B. Y., Reddy, K. R., & Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029
  • Zhang, D., Bui, M., Fajardy, M., Patrizio, P., Kraxner, F., & Mac Dowell, N. (2020). Unlocking the potential of BECCS with indigenous sources of biomass at a national scale. Sustainable Energy & Fuels, 4(1), 226–253. https://doi.org/10.1039/C9SE00609E