2,909
Views
5
CrossRef citations to date
0
Altmetric
Synthesis Articles

Carbon accounting for negative emissions technologies

, ORCID Icon, ORCID Icon &
Pages 699-717 | Received 16 Sep 2020, Accepted 14 Jan 2021, Published online: 03 Feb 2021

References

  • Adams, P., A., Gilbert, P., J., Howard, D., Lee, R., McNamara, N., Thornley, P., C., Whitaker, J., et al. (2013). Understanding greenhouse gas balances of bioenergy systems. http://nora.nerc.ac.uk/503461/7/N503461CR.pdf
  • Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C. E., Scott, V., Gilfillan, S. M. V., Ogaya, X., & Haszeldine, R. S. (2018). Estimating geological CO2 storage security to deliver on climate mitigation. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-04423-1
  • Alcalde, J., Smith, P., Haszeldine, R. S., & Bond, C. E. (2018). The potential for implementation of negative emission technologies in Scotland. International Journal of Greenhouse Gas Control. Elsevier, 76(June), 85–91. https://doi.org/10.1016/j.ijggc.2018.06.021
  • Anderson, K., & Peters, G. (2016). The trouble with negative emissions. Science, 354(6309), 182–183. https://doi.org/10.1126/science.aah4567
  • Ascui, F., & Lovell, H. (2011). As frames collide: Making sense of carbon accounting. Accounting, Auditing & Accountability Journal, 24(8), 978–999. https://doi.org/10.1108/09513571111184724
  • Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions. Nature Communications, 10(1), 8–11. https://doi.org/10.1038/s41467-019-09782-x
  • Bhave, A., Taylor, R. H. S., Fennell, P., Livingston, W. R., Shah, N., Dowell, N. M., Dennis, J., Kraft, M., Pourkashanian, M., Insa, M., Jones, J., Burdett, N., Bauen, A., Beal, C., Smallbone, A., & Akroyd, J. (2017). Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets. Applied Energy. Elsevier Ltd, 190, 481–489. https://doi.org/10.1016/j.apenergy.2016.12.120
  • Bird, D. N., Pena, N., Frieden, D., & Zanchi, G. (2012). Zero, one, or in between: Evaluation of alternative national and entity-level accounting for bioenergy. GCB Bioenergy, 4(5), 576–587. https://doi.org/10.1111/j.1757-1707.2011.01137.x
  • Bode, S., & Jung, M. (2006). Carbon dioxide capture and storage - liability for non-permanence under the UNFCCC. International Environmental Agreements: Politics, Law and Economics, 6(2), 173–186. https://doi.org/10.1007/s10784-006-9004-4
  • Boucher, O., Forster, P. M., Gruber, N., Ha-Duong, M., Lawrence, M. G., Lenton, T. M., Maas, A., & Vaughan, N. E. (2014). Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdisciplinary Reviews: Climate Change, 5(1), 23–35. https://doi.org/10.1002/wcc.261
  • Brack, D. (2017). Woody Biomass for Power and Heat: Impacts on the Global Climate. (February). https://www.chathamhouse.org/publication/woody-biomass-power-and-heat-impacts-global-climate
  • Brander, M. (2016a). Conceptualising attributional LCA is necessary for resolving methodological issues such as the appropriate form of land use baseline. International Journal of Life Cycle Assessment, 21(12), https://doi.org/10.1007/s11367-016-1147-0
  • Brander, M. (2016b). Transposing lessons between different forms of consequential greenhouse gas accounting: Lessons for consequential life cycle assessment, project-level accounting, and policy-level accounting. Journal of Cleaner Production. Elsevier Ltd, 112, 4247–4256. https://doi.org/10.1016/j.jclepro.2015.05.101
  • Brander, M. (2017). Comparative analysis of attributional corporate greenhouse gas accounting, consequential life cycle assessment, and project/policy level accounting: A bioenergy case study. Journal of Cleaner Production. Elsevier Ltd, 167, 1401–1414. https://doi.org/10.1016/j.jclepro.2017.02.097
  • Brander, M., Burritt, R. L., & Christ, K. L. (2019). Coupling attributional and consequential life cycle assessment: A matter of social responsibility. Journal of Cleaner Production. Elsevier Ltd, 215, 514–521. https://doi.org/10.1016/j.jclepro.2019.01.066
  • Cain, M., Lynch, J., Allen, M. R., Fuglestvedt, J. S., Frame, D. J., & Macey, A. H. (2019). Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Climate and Atmospheric Science. Springer US, 2(1), https://doi.org/10.1038/s41612-019-0086-4
  • Camacho-Otero, J., Boks, C., & Pettersen, I. N. (2018). Consumption in the circular economy: A literature review. Sustainability (Switzerland), 10(8), https://doi.org/10.3390/su10082758
  • Carton, W. (2019). “Fixing” climate change by mortgaging the future: Negative emissions, spatiotemporal fixes, and the political economy of delay. Antipode, 51(3), 750–769. https://doi.org/10.1111/anti.12532
  • Cherubini, F., Fuglestvedt, J., Gasser, T., Reisinger, A., Cavalett, O., Huijbregts, M. A. J., Johansson, D. J. A., Jørgensen, S. V., Raugei, M., Schivley, G., Strømman, A. H., Tanaka, K., & Levasseur, A. (2016). Bridging the gap between impact assessment methods and climate science. Environmental Science & Policy. Elsevier Ltd, 64, 129–140. https://doi.org/10.1016/j.envsci.2016.06.019
  • Colvin, R. M., Kemp, L., Talberg, A., De Castella, C., Downie, C., Friel, S., Grant, W. J., Howden, M., Jotzo, F., Markham, F., & Platow, M. J. (2020). Learning from the climate change debate to avoid polarisation on negative emissions. Environmental Communication, 14(1), 23–35. https://doi.org/10.1080/17524032.2019.1630463
  • Creutzig, F., Breyer, C., Hilaire, J., Minx, J., Peters, G. P., & Socolow, R. (2019). The mutual dependence of negative emission technologies and energy systems. Energy and Environmental Science. Royal Society of Chemistry, 12(6), 1805–1817. https://doi.org/10.1039/c8ee03682a
  • Daggash, H. A., Fajardy, M., & Mac Dowell, N. (2019). Negative emissions technologies. In M. Bui & N. Mac Dowell (Eds.), Carbon capture and storage, (pp. 447–511). Royal Society of Chemistry. https://doi.org/10.1039/9781788012744-00447.
  • Ecofys. (2017). CCC Indicators to Track Progress in Developing GHG Removal Options. https://www.theccc.org.uk/publication/indicators-to-track-progress-in-developing-greenhouse-gas-removal-options/
  • Fajardy, M., & Mac Dowell, N. (2017). Can BECCS deliver sustainable and resource efficient negative emissions? Energy and Environmental Science. Royal Society of Chemistry, 10(6), 1389–1426. https://doi.org/10.1039/c7ee00465f
  • Fajardy, M., Patrizio, P., Daggash, H. A., & Mac Dowell, N. (2019). Negative emissions: Priorities for research and policy design. Frontiers in Climate, 1(October), 1–7. https://doi.org/10.3389/fclim.2019.00006
  • Fearnside, P. M., Lashof, D. A., & Moura-Costa, P. (2000). Accounting for time in mitigating global warming through land-use change and forestry. Mitigation and Adaptation Strategies for Global Change, 5(3), 239–270. https://doi.org/10.1023/A:1009625122628
  • Field, J. L., Richard, T. L., Smithwick, E. A. H., Cai, H., Laser, M. S., LeBauer, D. S., Long, S. P., Paustian, K., Qin, Z., Sheehan, J. J., Smith, P., Wang, M. Q., & Lynd, L. R. (2020). Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21968–21977. https://doi.org/10.1073/pnas.1920877117
  • Fridahl, M., Hansson, A., & Haikola, S. (2020). Towards indicators for a negative emissions climate stabilisation index: Problems and prospects. Climate, 8(6), 75–22. https://doi.org/10.3390/CLI8060075
  • Frieden, D., Pena, N., & Bird, D. N. (2012). Incentives for the use of forest biomass: A comparative analysis of Kyoto Protocol accounting pre- and post-2012. Greenhouse Gas Measurement and Management, 2(2–3), 84–92. https://doi.org/10.1080/20430779.2012.723513
  • Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M., van Vuuren, D. P., Canadell, J. G., Jackson, R. B., Milne, J., Moreira, J. R., Nakicenovic, N., Sharifi, A., & Yamagata, Y. (2016). Research priorities for negative emissions. Environmental Research Letters, 11(11), 115007. https://doi.org/10.1088/1748-9326/11/11/115007
  • Galik, C. S., & Jackson, R. B. (2009). Risks to forest carbon offset projects in a changing climate. Forest Ecology and Management, 257(11), 2209–2216. https://doi.org/10.1016/j.foreco.2009.03.017
  • Galinato, G. I., Olanie, A., Uchida, S., & Yoder, J. K. (2011). Long-term versus temporary certified emission reductions in forest carbon sequestration programs. Australian Journal of Agricultural and Resource Economics, 55(4), 537–559. https://doi.org/10.1111/j.1467-8489.2011.00555.x
  • Geden, O., & Löschel, A. (2017). Define limits for temperature overshoot targets. Nature Geoscience, 10(12), 881–882. https://doi.org/10.1038/s41561-017-0026-z
  • Geden, O., Scott, V., & Palmer, J. (2018). Integrating carbon dioxide removal into EU climate policy: Prospects for a paradigm shift. Wiley Interdisciplinary Reviews: Climate Change, 9(4), e521–e510. https://doi.org/10.1002/wcc.521
  • Gilbert, A., & Sovacool, B. K. (2015). Emissions accounting for biomass energy with CCS. Nature Climate Change. Nature Publishing Group, 5(6), 496. https://doi.org/10.1038/nclimate2634
  • Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R. P., Williamson, P., Huisingh, D., Zhang, Z., & Tavoni, M. (2020). Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production. Elsevier Ltd, 244(xxxx), 118896. https://doi.org/10.1016/j.jclepro.2019.118896
  • Goodwin, P., Williams, R. G., & Ridgwell, A. (2015). Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nature Geoscience, 8(1), 29–34. https://doi.org/10.1038/ngeo2304
  • Gough, C., Garcia-Freites, S., Jones, C., Mander, S., Moore, B., Pereira, C., Röder, M., Vaughan, N., & Welfle, A. (2018). Challenges to the use of BECCS as a keystone technology in pursuit of 1.5°C. Global Sustainability, 1, 1–9. https://doi.org/10.1017/sus.2018.3
  • Grönkvist, S., Möllersten, K., & Pingoud, K. (2006). Equal opportunity for biomass in greenhouse gas accounting of CO2 capture and storage: A step towards more cost-effective climate change mitigation regimes. Mitigation and Adaptation Strategies for Global Change, 11(5–6), 1083–1096. https://doi.org/10.1007/s11027-006-9034-9
  • Guest, G., Bright, R. M., Cherubini, F., & Strømman, A. H. (2013). Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems. Environmental Impact Assessment Review. Elsevier B.V., 43, 21–30. https://doi.org/10.1016/j.eiar.2013.05.002
  • Haberl, H., Sprinz, D., Bonazountas, M., Cocco, P., Desaubies, Y., Henze, M., Hertel, O., Johnson, R. K., Kastrup, U., Laconte, P., Lange, E., Novak, P., Paavola, J., Reenberg, A., van den Hove, S., Vermeire, T., Wadhams, P., & Searchinger, T. (2012). Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy. Elsevier, 45(5), 18–23. https://doi.org/10.1016/j.enpol.2012.02.051
  • Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S. E., Collins, W. J., Comyn-Platt, E., Daioglou, V., Doelman, J. C., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C. P., Bastos, A., … Shu, S. (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-05340-z
  • Höhne, N., & Blok, K. (2005). Calculating historical contributions to climate change - Discussing the “Brazilian proposal”. Climatic Change, 71(1–2), 141–173. https://doi.org/10.1007/s10584-005-5929-9
  • Iordan, C.-M., Hu, X., Arvesen, A., Kauppi, P., & Cherubini, F. (2018). Contribution of forest wood products to negative emissions: Historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance and Management. Springer International Publishing, 13(1), https://doi.org/10.1186/s13021-018-0101-9
  • IPCC. (2018). IPCC special report on the impacts of global warming of 1.5°C - Summary for policy makers. http://www.ipcc.ch/report/sr15/
  • IPCC. (2019). Overivew of 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc.ch/site/assets/uploads/2018/05/Details_Selection_of_Authors.pdf
  • IPCC. (2006). IPCC guidelines for national greenhouse gas inventories (H. S. Eggleston et al., Eds). Intergovernmental Panel on Climate Change.
  • Johnston, C. M. T., & Radeloff, V. C. (2019). Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences of the United States of America, 116(29), 14526–14531. https://doi.org/10.1073/pnas.1904231116
  • Jonker, J. G. G., Junginger, M., & Faaij, A. (2014). Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. GCB Bioenergy, 6(4), 371–389. https://doi.org/10.1111/gcbb.12056
  • Kemper, J. (2015). Biomass and carbon dioxide capture and storage: A review. International Journal of Greenhouse Gas Control, 40, 401–430. https://doi.org/10.1016/j.ijggc.2015.06.012
  • Kirschbaum, M. U. F. (2014). Climate-change impact potentials as an alternative to global warming potentials. Environmental Research Letters, 9(3), 034014. https://doi.org/10.1088/1748-9326/9/3/034014
  • Knight, F. (1933). Risk, uncertainty, and Profit. London School of Economics and Political Science.
  • Lamers, P., & Junginger, M. (2013). The “debt” is in the detail : A synthesis of recent temporal forest carbon analyses on woody biomass. 373–385. https://doi.org/10.1002/bbb.
  • Larkin, A., Kuriakose, J., Sharmina, M., & Anderson, K. (2018). What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Climate Policy. Taylor & Francis, 18(6), 690–714. https://doi.org/10.1080/14693062.2017.1346498
  • Lawrence, M. G., Schäfer, S., Muri, H., Scott, V., Oschlies, A., Vaughan, N. E., Boucher, O., Schmidt, H., Haywood, J., & Scheffran, J. (2018). Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nature Communications. Springer US, 9(1), https://doi.org/10.1038/s41467-018-05938-3
  • Levasseur, A., Lesage, P., Margni, M., Deschênes, L., & Samson, R. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science & Technology, 44(8), 3169–3174. https://doi.org/10.1021/es9030003
  • Lilliestam, J., Bielicki, J. M., & Patt, A. G. (2012). Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): potentials, costs, risks, and barriers. Energy Policy. Elsevier, 47, 447–455. https://doi.org/10.1016/j.enpol.2012.05.020
  • Lin, A. C. (2018). Carbon dioxide removal after Paris. Ecology Law Quarterly, 45(3), 533–582. https://doi.org/10.15779/Z386M3340F
  • Lomax, G., Workman, M., Lenton, T., & Shah, N. (2015). Reframing the policy approach to greenhouse gas removal technologies. Energy Policy. Elsevier, 78, 125–136. https://doi.org/10.1016/j.enpol.2014.10.002
  • Mantripragada, H. C., Zhai, H., & Rubin, E. S. (2019). Boundary Dam or Petra Nova – which is a better model for CCS energy supply? International Journal of Greenhouse Gas Control. Elsevier, 82(October 2018), 59–68. https://doi.org/10.1016/j.ijggc.2019.01.004
  • McLaren, D. (2012a). A comparative global assessment of potential negative emissions technologies. Process Safety and Environmental Protection. Institution of Chemical Engineers, 90(6), 489–500. https://doi.org/10.1016/j.psep.2012.10.005
  • McLaren, D. (2012b). Governance and equity in the development and deployment of negative emissions technologies. http://www.earthsystemgovernance.org/lund2012/LC2012-paper237.pdf
  • McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B., & Markusson, N. O. (2019). Beyond “Net-zero”: A case for separate targets for emissions Reduction and negative emissions. Frontiers in Climate, 1(August), 1–5. https://doi.org/10.3389/fclim.2019.00004
  • Mcmanus, M. C., & Taylor, C. M. (2015). The changing nature of life cycle assessment. Biomass and Bioenergy. Elsevier Ltd, 13–26. https://doi.org/10.1016/j.biombioe.2015.04.024
  • McMullin, B., Price, P., Jones, M. B., & McGeever, A. H. (2020). Assessing negative carbon dioxide emissions from the perspective of a national “fair share” of the remaining global carbon budget. Mitigation and Adaptation Strategies for Global Change, https://doi.org/10.1007/s11027-019-09881-6
  • Meadowcroft, J. (2013). Exploring negative territory carbon dioxide removal and climate policy initiatives. Climatic Change, 118(1), 137–149. https://doi.org/10.1007/s10584-012-0684-1
  • Mitchell, S. R., Harmon, M. E., & O’Connell, K. E. B. (2012). Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy, 4(6), 818–827. https://doi.org/10.1111/j.1757-1707.2012.01173.x
  • National Academies of Science Engineering and Medicine. (2019). Negative emissions technologies and reliable sequestration: A research Agenda, negative emissions technologies and reliable sequestration. The National Academies Press. https://doi.org/10.17226/25259.
  • Neeff, T., & Ascui, F. (2009). Lessons from carbon markets for designing an effective REDD architecture. Climate Policy, 9(3), 306–315. https://doi.org/10.3763/cpol.2008.0584
  • Nemet, G. F., Callaghan, M. W., Creutzig, F., Fuss, S., Hartmann, J., Hilaire, J., Lamb, W. F., Minx, J. C., Rogers, S., & Smith, P. (2018). Negative emissions - part 3: Innovation and upscaling. Environmental Research Letters, 13(6), https://doi.org/10.1088/1748-9326/aabff4
  • Neubauer, S. C., & Megonigal, J. P. (2015). Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems. Springer US, 18(6), 1000–1013. https://doi.org/10.1007/s10021-015-9879-4
  • Obersteiner, M., Bednar, J., Wagner, F., Gasser, T., Ciais, P., Forsell, N., Frank, S., Havlik, P., Valin, H., Janssens, I. A., Peñuelas, J., & Schmidt-Traub, G. (2018). How to spend a dwindling greenhouse gas budget. Nature Climate Change, 8(1), 7–10. https://doi.org/10.1038/s41558-017-0045-1
  • Oraee-Mirzamani, B., Cockerill, T., & Makuch, Z. (2013). Risk assessment and management associated with CCS. Energy Procedia. Elsevier B.V., 37, 4757–4764. https://doi.org/10.1016/j.egypro.2013.06.385
  • Peters, G. P., & Geden, O. (2017). Catalysing a political shift from low to negative carbon. Nature Climate Change. Nature Publishing Group, 7(9), 619–621. https://doi.org/10.1038/nclimate3369
  • Plassmann, K. (2012). Accounting for carbon removals. Nature Climate Change. Nature Publishing Group, 2(1), 4–6. https://doi.org/10.1038/nclimate1333
  • Plevin, R. J., Delucchi, M. A., & Creutzig, F. (2014). Using attributional life cycle assessment to estimate climate-change mitigation benefits Misleads policy makers. Journal of Industrial Ecology, 18(1), 73–83. https://doi.org/10.1111/jiec.12074
  • Rabl, A., Benoist, A., Dron, D., Peuportier, B., Spadaro, J. V., & Zoughaib, A. (2007). How to account for CO2 emissions from biomass in an LCA. The International Journal of Life Cycle Assessment, 12(5), 281–281. https://doi.org/10.1065/lca2007.06.347
  • Reid, W. V., Ali, M. K., & Field, C. B. (2020). The future of bioenergy. Global Change Biology, 26(1), 274–286. https://doi.org/10.1111/gcb.14883
  • Rickels, W., Merk, C., Reith, F., Keller, D. P., & Oschlies, A. (2019). (Mis)conceptions about modeling of negative emissions technologies. Environmental Research Letters. IOP Publishing, 14(10), 104004. https://doi.org/10.1088/1748-9326/ab3ab4
  • RS-RAEng. (2018). Greenhouse Gas Removal. https://royalsociety.org/~/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-report-2018.pdf
  • Scott, V., Haszeldine, R. S., Tett, S. F. B., & Oschlies, A. (2015). Fossil fuels in a trillion tonne world. Nature Climate Change. Nature Publishing Group, 5(5), 419–423. https://doi.org/10.1038/nclimate2578
  • Searchinger, T. D., Hamburg, S. P., Melillo, J., Chameides, W., Havlik, P., Kammen, D. M., Likens, G. E., Lubowski, R. N., Obersteiner, M., Oppenheimer, M., Philip Robertson, G., Schlesinger, W. H., & David Tilman, G. (2009). Fixing a critical climate accounting error. Science, 326(October), 527–528. https://doi.org/10.1126/science.1178797
  • Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E., & Tubiello, F. (2014). Agriculture, Forestry and other land Use (AFOLU). In Edenhofer O., Pichs-Madruga R., Sokona Y., Farahani E., Kadner S., Seyboth K., Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B, Savolainen J., Schlomer S., Von Stechow C., Zwickel T., & Minx J. (Eds.), Climate change 2014: mitigation of climate change. Contribution of working group III to the Fifth assessment report of the intergovernmental panel on climate change (pp. 811–922). Cambridge University Press.
  • Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., … Yongsung, C. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change. Nature Publishing Group, a Division of Macmillan Publishers Limited. All Rights Reserved, 6(1), 42. https://doi.org/10.1038/nclimate2870
  • Smith, P., & Friedmann, J. (2017). Briding the Gap - carbon dioxide removal. In Olhof A. & Christensen J. (Eds.), The emissions Gap report (pp. 58–66). UNEP. https://wedocs.unep.org/bitstream/handle/20.500.11822/22108/EGR_2017_ch_7.pdf?isAllowed=y&sequence=1
  • Stavrakas, V., Spyridaki, N. A., & Flamos, A. (2018). Striving towards the deployment of bio-energy with carbon capture and storage (BECCS): A review of research priorities and assessment needs. Sustainability (Switzerland), 10(7), https://doi.org/10.3390/su10072206
  • Subak, S. (2003). Replacing carbon lost from forests: An assessment of insurance, reserves, and expiring credits. Climate Policy, 3(2), 107–122. https://doi.org/10.3763/cpol.2003.0315
  • Talberg, A., Christoff, P., Thomas, S., & Karoly, D. (2018). Geoengineering governance-by-default: An earth system governance perspective. International Environmental Agreements: Politics, Law and Economics. Springer Netherlands, 18(2), 229–253. https://doi.org/10.1007/s10784-017-9374-9
  • Tanzer, S. E., & Ramírez, A. (2019). When are negative emissions negative emissions? Energy and Environmental Science, 12(4), 1210–1218. https://doi.org/10.1039/c8ee03338b
  • Timma, L., & Parajuli, R. (2019). Time Dynamics in Life Cycle Assessment-Exemplified By a Case Study on Biorefineries. http://www.Sdewes.Org/Jsdewes/Reviewers.Php, (May), 27–30. https://pure.au.dk/ws/files/159309859/4DO.5.2_paper_27th_2019.pdf?fbclid=IwAR3AgpP7JlixbXKrmNuj9dafSHaf0wTkFWbhMfsGmuvhfNUozeV1BwZhDvw
  • Tokarska, K. B., & Zickfeld, K. (2015). The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environmental Research Letters. IOP Publishing, 10(9), https://doi.org/10.1088/1748-9326/10/9/094013
  • Torvanger, A. (2019). Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement. Climate Policy. Taylor & Francis, 19(3), 329–341. https://doi.org/10.1080/14693062.2018.1509044
  • Trevizan, F., Cozman, F., & de Barros, L. (2007). Planning under Risk and Knightian Uncertainty. Proceedings of the 20th International Joint Conference on Artifical Intelligence. San Francisco, USA: Morgan Kaufmann Publishers Inc, pp. 2023–2028.
  • UK Parliament. (2019). The Climate Change Act 2008 (2050 Target Amendment) Order 2019. http://www.legislation.gov.uk/ukdsi/2019/9780111187654/pdfs/ukdsi_9780111187654_en.pdf
  • UNFCCC. (2015). Paris Agreement, Paris Agreement. https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf
  • van Vuuren, D. P., Deetman, S., van Vliet, J., van den Berg, M., van Ruijven, B. J., & Koelbl, B. (2013). The role of negative CO2 emissions for reaching 2 °C-insights from integrated assessment modelling. Climatic Change, 118(1), 15–27. https://doi.org/10.1007/s10584-012-0680-5
  • Wolfswinkel, J. F., Furtmueller, E., & Wilderom, C. P. M. (2013). Using grounded theory as a method for rigorously reviewing literature. European Journal of Information Systems, 22(1), 45–55. https://doi.org/10.1057/ejis.2011.51
  • WRI. (2014). Greenhouse Gas Protocol: Policy and Action Standard. World Resources Institute.
  • Zakkour, P., Kemper, J., & Dixon, T. (2014). Incentivising and accounting for negative emission technologies. Energy Procedia, 63, 6824–6833. https://doi.org/10.1016/j.egypro.2014.11.716
  • Zanchi, G., Pena, N., & Bird, N. (2012). Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB Bioenergy, 4(6), 761–772. https://doi.org/10.1111/j.1757-1707.2011.01149.x
  • Zickfeld, K., MacDougall, A. H., & Damon Matthews, H. (2016). On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environmental Research Letters. IOP Publishing, 11(5), https://doi.org/10.1088/1748-9326/11/5/055006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.