2,833
Views
0
CrossRef citations to date
0
Altmetric
Synthesis Article

Drivers and effects of digitalization on energy demand in low-carbon scenarios

&
Pages 329-342 | Received 07 Mar 2022, Accepted 03 Nov 2022, Published online: 17 Nov 2022

References

  • Accenture Strategy. (2015). #SMARTer2030: ICT solutions for 21st century challenges. Global e-Sustainability Initiative (GeSI).
  • Andrae, A. S. G., & Edler, T. (2015). On global electricity usage of communication technology: Trends to 2030. Challenges, 6(1), 117–157. https://doi.org/10.3390/challe6010117
  • Barrett, J., Pye, S., Betts-Davies, S., Eyre, N., Broad, O., Price, J., Norman, J., Anable, J., Bennet, G., Brand, C., Carr-Whitworth, R., Marsden, G., Oreszczyn, T., Giesekam, J., Garvey, A., Ruyssevelt, P., & Scott, K. (2021). The role of energy demand reduction in achieving net-zero in the UK. Centre for Research into Energy Demand Solutions.
  • Belkhir, L., & Elmeligi, A. (2018). Assessing ICT global emissions footprint: Trends to 2040 & recommendations. Journal of Cleaner Production, 177, 448–463. https://doi.org/10.1016/j.jclepro.2017.12.239
  • Belostotskaya, A. (2019). Rethinking the future of energy: Scenarios for 2050. Moscow School of Management - Skolkovo Institute for Emerging Market Studies. https://doi.org/10.2139/ssrn.3450437
  • Brand, C., Anable, J., & Marsden, G. (2021). The role of energy demand reduction in achieving net-zero in the UK: Transport and mobility. Centre for Research into Energy Demand Solutions.
  • Brockway, P. E., et al. (2021). Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications. Renewable and Sustainable Energy Reviews, 141, 110781. https://doi.org/10.1016/j.rser.2021.110781
  • Broo, D. G., Lamb, K., Ehwi, R. J., Pärn, E., Koronaki, A., Makri, C., & Zomer, T. (2020). Four futures, One choice: Options for the digital built Britain of 2040. Centre for Digital Built Britain. https://doi.org/10.17863/CAM.59803
  • Brugger, H., Eichhammer, W., Mikova, N., & Donitz, E. (2021). Energy efficiency vision 2050: How will new societal trends influence future energy demand in the European countries? Energy Policy, 152, 1–15. https://doi.org/10.1016/j.enpol.2021.112216
  • Caldarola, B., & Sorrell, S. (2021, June 7–11). The impact of teleworking on English travel. ECEEE 2021 summer study proceedings (pp. 679–689).
  • Centre for Alternative Technology. (2019). Zero carbon Britain: Rising to the climate emergency, CAT publications.
  • Committee on Climate Change. (2020). The sixth carbon budget: The UK’s path to net zero. Committee on Climate Change. www.theccc.org.uk
  • Court, V., & Sorrell, S. (2020). Digitalisation of goods: A systematic review of the determinants and magnitude of the impacts on energy consumption. Environmental Research Letters, 15(43001), 1–26. https://doi.org/10.1088/1748-9326/ab6788
  • Creutzig, F., et al. (2018). Towards demand-side solutions for mitigating climate change. Nature Climate Change, 8(4), 260–263. https://doi.org/10.1038/s41558-018-0121-1
  • Eyre, N., & Killip, G. (Eds.) (2019). Shifting the focus: Energy demand in a net-zero carbon UK. Centre for Research into Energy Demand Solutions. https://www.creds.ac.uk/publications/shifting-the-focus-energy-demand-in-a-net-zero-carbon-uk/.
  • Foxon, T. J., & Bergman, N. (2021, June 7–11). The role of digitalisation in low carbon scenarios. ECEEE 2021 summer study proceedings. Online: European council for an energy efficient economy (pp. 335–344).
  • Grubler, A., et al. (2018). A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. Nature Energy, 3(6), 515–527. https://doi.org/10.1038/s41560-018-0172-6
  • Guillen-Hanson, G., Strube, R., & Xhelili, A. (2018). INHERIT: Reaching the ‘triple-win’, four future scenarios of a healthier, more equitable and sustainable Europe in 2040.
  • Hewitt, R. J., et al. (2021). Beyond shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs): Climate policy implementation scenarios for Europe, the US and China. Climate Policy, 21(4), 434–454. https://doi.org/10.1080/14693062.2020.1852068
  • Horner, N. C., Shehabi, A., & Azevedo, I. L. (2016). Known unknowns: Indirect energy effects of information and communication technology. Environmental Research Letters, 11(10), 103001. https://doi.org/10.1088/1748-9326/11/10/103001
  • Hughes, N., Strachan, N., & Gross, R. (2013). The structure of uncertainty in future low carbon pathways. Energy Policy, 52, 45–54. https://doi.org/10.1016/j.enpol.2012.04.028
  • IEA. (2017). International Energy Agency – Digitalization & energy, digitalization & energy. IEA Publications. www.iea.org
  • Keyßer, L. T., & Lenzen, M. (2021). 1.5°C degrowth scenarios suggest the need for new mitigation pathways. Nature Communications, 12(1), 1. https://doi.org/10.1038/s41467-021-22884-9
  • Kuhnhenn, K., Costa, L., Mahnke, E., Schneider, L., & Lange, S. (2020). A societal transformation scenario for staying below 1.5°C Schriften zu Wirtschaft und Soziales, 23. (Vol. 23). The institution is: Heinrich Böll Foundation.
  • Lange, S., Pohl, J., & Santarius, T. (2020). Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics, 176, 106760. https://doi.org/10.1016/j.ecolecon.2020.106760
  • Mazzucato, M. (2016). From market fixing to market-creating: A new framework for innovation policy. Industry and Innovation, 23(2), 2. https://doi.org/10.1080/13662716.2016.1146124
  • Mercure, J. F., et al. (2019). Modelling innovation and the macroeconomics of low-carbon transitions: Theory, perspectives and practical use. Climate Policy, 19(8), 1019–1037. https://doi.org/10.1080/14693062.2019.1617665
  • National Grid. (2020). Future energy scenarios. National Grid ESO. Retrieved January 28, 2021, from https://www.nationalgrideso.com/future-energy/future-energy-scenarios/fes-2020-documents
  • Noussan, M., & Tagliapietra, S. (2020). The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe. Journal of Cleaner Production, 258, 120926. https://doi.org/10.1016/j.jclepro.2020.120926
  • Pohl, J., Hilty, L. M., & Finkbeiner, M. (2019). How LCA contributes to the environmental assessment of higher order effects of ICT application: A review of different approaches. Journal of Cleaner Production, 219, 698–712. https://doi.org/10.1016/j.jclepro.2019.02.018
  • Pye, S., et al. (2021). Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 21(2), 222–231. https://doi.org/10.1080/14693062.2020.1824891
  • Sovacool, B. K., et al. (2017). ‘Vulnerability and resistance in the United Kingdom’s smart meter transition’. Energy Policy, 109, 767–781. https://doi.org/10.1016/j.enpol.2017.07.037
  • Stammer, D., et al. (Eds.) (2021). Hamburg climate futures Outlook 2021. Assessing the plausibility of deep decarbonization by 2050. Cluster of Excellence Climate, Climatic Change, and Society (CLICCS).
  • Strengers, Y., & Nicholls, L. (2017). Convenience and energy consumption in the smart home of the future: Industry visions from Australia and beyond. Energy Research and Social Science, 32, 86–93. https://doi.org/10.1016/j.erss.2017.02.008
  • The Royal Society. (2020). Digital technology and the planet: Harnessing computing to achieve net zero. The Royal Society. https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/