1,270
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nature to the rescue: past drivers and future potential of the Australian land-based carbon offsets market

ORCID Icon, ORCID Icon & ORCID Icon
Pages 601-616 | Received 13 Jun 2022, Accepted 23 Jun 2023, Published online: 02 Aug 2023

References

  • Anh, N. T., Masuda, M., & Iwanaga, S. (2016). Status of forest development and opportunity cost of avoiding forest conversion in Ba Be National Park, Vietnam. Tropics. 2016.
  • Anup, K., Joshi, G. R., & Aryal, S. (2014). Opportunity cost, willingness to pay and cost benefit analysis of a community forest of Nepal. International Journal of Environment, 3(2), 108–124. https://doi.org/10.3126/ije.v3i2.10522
  • Ausseil, A.-G. E., Daigneault, A. J., Frame, B., & Teixeira, E. I. (2019). Towards an integrated assessment of climate and socio-economic change impacts and implications in New Zealand. Environmental Modelling & Software, 119, 1–20. https://doi.org/10.1016/j.envsoft.2019.05.009
  • Australian Government. (2021). Australia's long-term emissions reduction plan. A whole-of-economy plan to achieve net zero emissions by 2050.
  • Australian Government Clean Energy Regulator. (n.d.). Understanding your soil carbon project emissions reduction fund simple method guide for soil carbon projects registered under the carbon credits (carbon farming initiative - estimation of soil organic carbon sequestration using measurement and models) methodology determination 2021.
  • Australian Government Department of Industry Science Energy and Resources. (2020a). National inventory report 2018: The Australian government submission to the United Nations framework convention on climate change.
  • Barry, L. E., Yao, R. T., Harrison, D. R., Paragahawewa, U. H., & Pannell, D. J. (2014). Enhancing ecosystem services through afforestation: How policy can help. Land Use Policy, 39, 135–145. https://doi.org/10.1016/j.landusepol.2014.03.012
  • Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions. Nature Communications, 10(1), 1–4. https://doi.org/10.1038/s41467-019-09782-x
  • Benton, T., Bailey, R., Froggatt, A., King, R., Lee, B., & Wellesley, L. (2018). Designing sustainable landuse in a 1.5 °C world: the complexities of projecting multiple ecosystem services from land. Current Opinion in Environmental Sustainability, 31, 88–95. https://doi.org/10.1016/j.cosust.2018.01.011
  • Blake, A., & Eves, C. (2012). Assessment of the application of contingent valuation theory to bio-sequestered carbon. In Proceedings of the 6th International Real Estate Research Symposium.
  • Blake, A. G. (2016). Carbon sequestration: Evaluating the impact on rural land and valuation approach Queensland. University of Technology.
  • Bradshaw, C. J. A., Bowman, D. M. J. S., Bond, N. R., Murphy, B. P., Moore, A. D., Fordham, D. A., & Johnson, C. N. (2013). Brave new green world – Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 161, 71–90. https://doi.org/10.1016/j.biocon.2013.02.012
  • Brown, C., Alexander, P., Arneth, A., Holman, I., & Rounsevell, M. (2019). Achievement of Paris climate goals unlikely due to time lags in the land system. Nature Climate Change, 9(3), 203–208. https://doi.org/10.1038/s41558-019-0400-5
  • Bryan, B. A., Nolan, M., McKellar, L., Connor, J. D., Newth, D., Harwood, T., & Gao, L. (2016). Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Global Environmental Change, 38, 130–152. https://doi.org/10.1016/j.gloenvcha.2016.03.002
  • Bureau of Meteorology. (2021). Gridded rainfall variability metadata.
  • Burrows, N., & Chapman, J. (2018). Traditional and contemporary fire patterns in the Great Victoria Desert, Western Australia (Final report, Great Victoria Desert biodiversity trust project GVD-P-17-002). D. o. B. Biodiversity and Conservation Science Division, Conservation and Attractions.
  • Burrows, N. D., Burbidge, A. A., Fuller, P. J., & Behn, G. (2006). Evidence of altered fire regimes in the Western Desert region of Australia. Conservation Science Western Australia, 5(3).
  • Busch, J., Engelmann, J., Cook-Patton, S. C., Griscom, B. W., Kroeger, T., Possingham, H., & Shyamsundar, P. (2019). Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change, 9(6), 463–466.
  • California Air Resources Board. (2021). ARB offset credit issuance table. https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program.
  • Carbon Credits (Carbon Farming Initiative) Act 2011 Cth.
  • Carbon Market Institute. (2016). Optimising Australia's position in international carbon markets.
  • Carbon Market Institute. (2017). Operationalizing Article 6 of the Paris Agreement – Perspectives of Australian business.
  • Carroll, J. L., & Daigneault, A. J. (2019). Achieving ambitious climate targets: Is it economical for New Zealand to invest in agricultural GHG mitigation? Environmental Research Letters, 14(12), 124064.
  • Chang, H. S., & Griffith, G. (1998). Examining long-run relationships between Australian beef prices. Australian Journal of Agricultural and Resource Economics, 42(4), 369–387. https://doi.org/10.1111/1467-8489.00058
  • Chappell, A., & Baldock, J. A. (2016). Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices. Aeolian Research, 22, 107–116. https://doi.org/10.1016/j.aeolia.2016.07.005
  • Chen, S., Arrouays, D., Angers, D. A., Martin, M. P., & Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53–58. https://doi.org/10.1016/j.still.2018.11.001
  • Chu, M.-Y., & Liu, W.-Y. (2021). Assessing the opportunity cost of carbon stock caused by land-use changes in Taiwan. Land, 10(11), 1240. https://doi.org/10.3390/land10111240
  • Clean Energy Regulator. (2021a). 12th auction April 2021 contract portfolio.
  • Clean Energy Regulator. (2021b). Area-based emissions reduction fund (ERF) projects. data.gov.au.
  • Clean Energy Regulator. (2021c). Carbon abatement contract register. Clean Energy Regulator. Retrieved February 10, 2021 from.
  • Clean Energy Regulator. (2021d). Emissions reduction fund project register.
  • Climateworks. (2010). Low carbon growth plan for Australia. https://www.climateworksaustralia.org/wp-content/uploads/2019/10/climateworks_lcgp_australia_full_report_mar2010-compressed.pdf.
  • Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C. R., & Renaud, F. G. (2019). Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 98, 20–29.
  • Commonwealth of Australia Department of Agriculture Water and the Environment. (2016). Australia state of the environment 2016.
  • Connor, J. D., Bryan, B. A., & Nolan, M. (2016). Cap and trade policy for managing water competition from potential future carbon plantations. Environmental Science & Policy, 66, 11–22.
  • Connor, J. D., Bryan, B. A., Nolan, M., Stock, F., Gao, L., Dunstall, S., & Grundy, M. (2015). Modelling Australian land use competition and ecosystem services with food price feedbacks at high spatial resolution. Environmental Modelling & Software, 69, 141–154. https://doi.org/10.1016/j.envsoft.2015.03.015
  • Daigneault, A., Baker, J. S., Guo, J., Lauri, P., Favero, A., Forsell, N., Sohngen, & B. (2022). How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Global Environmental Change, 76, 102582. https://doi.org/10.1016/j.gloenvcha.2022.102582
  • Dean, C., Kirkpatrick, J. B., Harper, R. J., & Eldridge, D. J. (2015). Optimising carbon sequestration in arid and semiarid rangelands. Ecological Engineering, 74, 148–163. https://doi.org/10.1016/j.ecoleng.2014.09.125
  • Department of Environment and Energy. (n.d.). Emissions reduction fund environmental data.
  • Dong, X., Waldron, S., Brown, C., & Zhang, J. (2018). Price transmission in regional beef markets: Australia, China and Southeast Asia. Emirates Journal of Food and Agriculture, 99–106. https://doi.org/10.9755/ejfa.2018.v30.i2.1601
  • Dooley, K., Stabinsky, D., Stone, K., Sharma, S., Anderson, T., Gurian-Sherman, D., & Riggs, P. (2018). Missing pathways to 1.5 °C: The role of the land sector in ambitious climate action. Climate Land Ambition and Rights Alliance.
  • Eady, S., Grundy, M., Battaglia, M., & Keating, B. (2009). An analysis of greenhouse gas mitigation and carbon biosequestration opportunities from rural land use. Armidale Australia.
  • Edwards, A., Archer, R., De Bruyn, P., Evans, J., Lewis, B., Vigilante, T., & Russell-Smith, J. (2021). Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. Journal of Environmental Management, 290, 112568. https://doi.org/10.1016/j.jenvman.2021.112568
  • Evans, M. C. (2018). Effective incentives for reforestation: Lessons from Australia's carbon farming policies. Current Opinion in Environmental Sustainability, 32, 38–45.
  • Evans, M. C., Carwardine, J., Fensham, R. J., Butler, D. W., Wilson, K. A., Possingham, H. P., & Martin, T. G. (2015). Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science & Policy, 50, 114–129.
  • Fajardy, M., & Mac Dowell, N. (2017). Can BECCS deliver sustainable and resource efficient negative emissions? Energy & Environmental Science, 10(6), 1389–1426. https://doi.org/10.1039/C7EE00465F
  • Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook-Patton, S. C., Ellis, P., Falcucci, A., Fourqurean, J. W., & Gopalakrishna, T. (2018). Natural climate solutions for the United States. Science Advances, 4(11), eaat1869.
  • Farmers for Climate Action. (2021). How can Australia's agriculture sector realise opportunity in a low emissions future? https://farmersforclimateaction.org.au/how-can-australias-agriculture-sector-realise-opportunity-in-a-low-emissions-future/.
  • Fridahl, M., & Lehtveer, M. (2018) Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers. Energy Research & Social Science, 42, 155–165.
  • Funk, J. M., Field, C. B., Kerr, S., & Daigneault, A. (2014). Modeling the impact of carbon farming on land use in a New Zealand landscape. Environmental Science & Policy, 37, 1–10. https://doi.org/10.1016/j.envsci.2013.08.008
  • Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., & Khanna, T. (2018). Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 13(6), 063002. https://doi.org/10.1088/1748-9326/aabf9f
  • Gambhir, A., Butnar, I., Li, P.-H., Smith, P., & Strachan, N. (2019). A review of criticisms of integrated assessment models and proposed approaches to address these, through the lens of BECCS. Energies, 12(9), 1747.
  • Golub, A., Hertel, T., Lee, H.-L., Rose, S., & Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31(4), 299–319. https://doi.org/10.1016/j.reseneeco.2009.04.007
  • Grafton, R. Q., Chu, H. L., Nelson, H., & Bonnis, G. (2021). A global analysis of the cost-efficiency of forest carbon sequestration.
  • Griscom, B. W., Busch, J., Cook-Patton, S. C., Ellis, P. W., Funk, J., Leavitt, S. M., Lomax, G., Turner, W. R., Chapman, M., & Engelmann, J. (2020). National mitigation potential from natural climate solutions in the tropics. Philosophical Transactions of the Royal Society B, 375(1794), 20190126.
  • Haverd, V., Raupach, M., Briggs, P., Canadell, J., Isaac, P., Pickett-Heaps, C., & Wang, Z. (2012). Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles. Biogeosciences Discussions, 9(9), 12181–12258. https://doi.org/10.5194/bgd-9-12181-2012
  • Hayek, F. (1945). The use of knowledge in society. The American Economic Review, 35(4).
  • Hoyos-Santillan, J., Miranda, A., Lara, A., Sepulveda-Jauregui, A., Zamorano-Elgueta, C., Gómez-González, S., Vásquez-Lavín, F., Garreaud, R. D., & Rojas, M. l. (2021). Diversifying Chile’s climate action away from industrial plantations. Environmental Science & Policy, 124, 85–89.
  • Intergovernmental Panel on Climate Change. (2019). Global warming of 1.5(C An IPCC special report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (sustainable development, and efforts to eradicate poverty. https://www ipcc. ch/sr15.
  • Jackson, R., Canadell, J., Fuss, S., Milne, J., Nakicenovic, N., & Tavoni, M. (2017). Focus on negative emissions. https://doi.org/10.1088/1748-9326/aa94ff
  • Jagtap, S., Trollman, H., Trollman, F., Garcia-Garcia, G., Parra-López, C., Duong, L., & Hdaifeh, A. (2022). The Russia-Ukraine conflict: Its implications for the global food supply chains. Foods (basel, Switzerland), 11(14), 2098. https://doi.org/10.3390/foods11142098
  • Kato, E., & Yamagata, Y. (2014). BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earth's Future, 2(9), 421–439. https://doi.org/10.1002/2014EF000249
  • Kelley, D., & Harrison, S. (2014). Enhanced Australian carbon sink despite increased wildfire during the 21st century. Environmental Research Letters, 9(10)(10), 104015. https://doi.org/10.1088/1748-9326/9/10/104015
  • Kragt, M. E., Pannell, D. J., Robertson, M. J., & Thamo, T. (2012). Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia. Agricultural Systems, 112, 27–37. https://doi.org/10.1016/j.agsy.2012.06.005
  • Lawson, K., Burns, K., Low, K., Heyhoe, E., & Ahammad, H. (2008). Analysing the economic potential of forestry for carbon sequestration under alternative carbon price paths. Australian Bureau of Agricultural and Resource Economics.
  • Longmire, A., Taylor, C., & Pearson, C. J. (2015). An open-access method for targeting revegetation based on potential for emissions reduction, carbon sequestration and opportunity cost. Land Use Policy, 42, 578–585. https://doi.org/10.1016/j.landusepol.2014.09.009
  • Ma, X., Huete, A., Cleverly, J., Eamus, D., Chevallier, F., Joiner, J., & Meyer, W. (2016). Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 6(1), 37747. https://doi.org/10.1038/srep37747
  • Man, C. D., Lyons, K. C., Nelson, J. D., & Bull, G. Q. (2015). Cost to produce carbon credits by reducing the harvest level in British Columbia, Canada. Forest Policy and Economics, 52, 9–17. https://doi.org/10.1016/j.forpol.2014.12.002
  • Maraseni, T. N., & Cockfield, G. (2015). The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland. Agricultural Systems, 135, 57–65.
  • Marinoni, O., Garcia, J. N., Marvanek, S., Prestwidge, D., Clifford, D., & Laredo, L. (2012). Development of a system to produce maps of agricultural profit on a continental scale: An example for Australia. Agricultural Systems, 105(1), 33–45. https://doi.org/10.1016/j.agsy.2011.09.002
  • Marinoni, O., & Navarro Garcia, J. (2018). Agricultural profit map for Australia for 2010–2011. v1. CSIRO.
  • McKinsey and Company. (2008). An Australian cost curve for greenhouse gas abatement. McKinsey and Company.
  • Minx, J. C., Lamb, W. F., Callaghan, M. W., Bornmann, L., & Fuss, S. (2017). Fast growing research on negative emissions. Environmental Research Letters, 12(3), 035007. https://doi.org/10.1088/1748-9326/aa5ee5
  • Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig, F., & Hartmann, J. (2018). Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 13(6), 063001. https://doi.org/10.1088/1748-9326/aabf9b
  • Monjardino, M., Revell, D., & Pannell, D. J. (2010). The potential contribution of forage shrubs to economic returns and environmental management in Australian dryland agricultural systems. Agricultural Systems, 103(4), 187–197. https://doi.org/10.1016/j.agsy.2009.12.007
  • Nature4climate. (2019). Guide to including nature in nationally determined contributions. A checklist of information and accounting approaches for natural climate solutions.
  • Polglase, P., Reeson, A., Hawkins, C., Paul, K., Siggins, A., Turner, J., & Opie, K. (2013). Potential for forest carbon plantings to offset greenhouse emissions in Australia: Economics and constraints to implementation. Climatic Change, 121(2), 161–175. https://doi.org/10.1007/s10584-013-0882-5
  • Pour, N., Webley, P. A., & Cook, P. J. (2018). Opportunities for application of BECCS in the Australian power sector. Applied Energy, 224, 615–635.
  • QGIS Development Team. (2016). QGIS geographic information system. Open Source Geospatial Foundation Project.
  • R Core Team. (2013). R: A language and environment for statistical computing.
  • Regan, C., Connor, J., Settre, C., Summers, D., & Cavagnaro, T. (2019). Assessing South Australian carbon offset supply and cost. Goyder institute for water research technical report series(19/03). Goyder Institute for Water Research Technical Report Series.
  • Regan, C. M., Bryan, B. A., Connor, J. D., Meyer, W. S., Ostendorf, B., Zhu, Z., & Bao, C. (2015). Real options analysis for land use management: Methods, application, and implications for policy. Journal of Environmental Management, 161, 144–152. https://doi.org/10.1016/j.jenvman.2015.07.004
  • Regan, C. M., Connor, J. D., Summers, D. M., Settre, C., O'Connor, P. J., & Cavagnaro, T. R. (2020). The influence of crediting and permanence periods on Australian forest-based carbon offset supply. Land Use Policy, 97, 104800. https://doi.org/10.1016/j.landusepol.2020.104800
  • Richards, G. P., & Evans, D. M. (2004). Development of a carbon accounting model (FullCAM Vers. 1.0) for the Australian continent. Australian Forestry, 67(4), 277–283. https://doi.org/10.1080/00049158.2004.10674947
  • Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., & Engelmann, J. (2021). Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 27(23), 6025–6058. https://doi.org/10.1111/gcb.15873
  • Roxburgh, S. H., Karunaratne, S. B., Paul, K. I., Lucas, R. M., Armston, J. D., & Sun, J. (2019). A revised above-ground maximum biomass layer for the Australian continent. Forest Ecology and Management, 432, 264–275. https://doi.org/10.1016/j.foreco.2018.09.011
  • Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., & Turner, B. (2021). Getting the message right on nature-based solutions to climate change. Global Change Biology, 27(8), 1518–1546. https://doi.org/10.1111/gcb.15513
  • Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310. https://doi.org/10.1214/10-STS330
  • Siikamäki, J., & Newbold, S. C. (2012). Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation. Ambio, 41(1), 78–89. https://doi.org/10.1007/s13280-011-0243-4
  • Sinnett, A., Behrendt, R., Ho, C., & Malcolm, B. (2016). The carbon credits and economic return of environmental plantings on a prime lamb property in south eastern Australia. Land Use Policy, 52, 374–381.
  • The Nous Group. (2010). Outback carbon: An assessment of carbon storage, sequestration and greenhouse gas emissions in remote Australia. The Pew Environment Group-Australia and the Nature Conservancy.
  • Tomich, T. P., de Foresta, H., Dennis, R., Ketterings, Q., Murdiyarso, D., Palm, C., & van Noordwijk, M. (2002). Carbon offsets for conservation and development in Indonesia? American Journal of Alternative Agriculture, 17(3), 125–137. https://doi.org/10.1079/AJAA200219
  • UNFCCC. (n.d.). Clean development mechanism project register.
  • Wade, C. M., Baker, J. S., Jones, J. P., Austin, K. G., Cai, Y., de Hernandez, A. B., & Creason, J. (2022). Projecting the impact of socioeconomic and policy factors on greenhouse gas emissions and carbon sequestration in U.S. Forestry and Agriculture. Journal of Forest Economics, 37(1), 127–131. https://doi.org/10.1561/112.00000545
  • Weishaar, S. (2007). CO2 emission allowance allocation mechanisms, allocative efficiency and the environment: A static and dynamic perspective. European Journal of Law and Economics, 24(1), 29–70. https://doi.org/10.1007/s10657-007-9020-z
  • White, R., & Davidson, B. (2016). The costs and benefits of approved methods for sequestering carbon in soil through the Australian Government’s emissions reduction fund. Environment and Natural Resources Research, 6, 99–109.
  • Wood, T., Reeve, A., & Ha, J. (2021). Towards net zero: Practical policies to reduce agricultural emissions (064508798X).
  • Yang, H., & Li, X. (2018). Potential variation in opportunity cost estimates for REDD+ and its causes. Forest Policy and Economics, 95, 138–146. https://doi.org/10.1016/j.forpol.2018.07.015
  • Zhang, X., & Cai, X. (2011). Climate change impacts on global agricultural land availability. Environmental Research Letters, 6(1), 014014. https://doi.org/10.1088/1748-9326/6/1/014014
  • Zomer, R. J., Trabucco, A., Bossio, D. A., & Verchot, L. V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126(1-2), 67–80. https://doi.org/10.1016/j.agee.2008.01.014