451
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Agricultural emission reduction targets at country and global levels: a bottom-up analysis

ORCID Icon & ORCID Icon
Pages 441-457 | Received 24 Feb 2023, Accepted 29 Sep 2023, Published online: 12 Oct 2023

References

  • Adenaeuer, L., Breen, J., Witzke, P., Kesting, M., & Hayden, A. (2023). The potential impacts of an EU-wide agricultural mitigation target on the Irish agriculture sector. Climate Policy, 23(4), 495–508. https://doi.org/10.1080/14693062.2022.2105791
  • Averchenkova, A., & Bassi, S. (2016). Beyond the targets: Assessing the political credibility of pledges for the Paris Agreement. https://doi.org/10.1163/9789004322714_cclc_2016-0148-032
  • Avetisyan, M., Golub, A., Hertel, T., Rose, S., & Henderson, B. (2011). Why a global carbon policy could have a dramatic impact on the pattern of the worldwide livestock production. Applied Economic Perspectives and Policy, 33(4), 584–605. https://doi.org/10.1093/aepp/ppr026
  • Avetisyan, M., Hertel, T., & Sampson, G. (2014). Is local food more environmentally friendly? The GHG emissions impacts of consuming imported versus domestically produced food. Environ Resource Econ, 58(3), 415–462. https://doi.org/10.1007/s10640-013-9706-3
  • Barreiro, H. J., Bogonos, M., Himics, M., Hristov, J., Perez, D. I., Sahoo, A., Salputra, G., Weiss, F., Baldoni, E., & Elleby, C. (2021). Modelling environmental and climate ambition in the agricultural sector with the CAPRI model [WWW Document]. JRC Publications Repository. URL Retrieved June 29, 2022, from https://publications.jrc.ec.europa.eu/repository/handle/JRC121368
  • Beck, M., & Krueger, T. (2016). The epistemic, ethical, and political dimensions of uncertainty in integrated assessment modeling. WIRES Climate Change, 7(5), 627–645. https://doi.org/10.1002/wcc.415
  • Bernauer, T. (2013). Climate change politics. Annual Review of Political Science, 16(1), 421–448. https://doi.org/10.1146/annurev-polisci-062011-154926
  • Brandt, P., Herold, M., & Rufino, M. C. (2018). The contribution of sectoral climate change mitigation options to national targets: A quantitative assessment of dairy production in Kenya. Environmental Research Letters, 13(3), 034016. https://doi.org/10.1088/1748-9326/aaac84
  • Bryngelsson, D., Wirsenius, S., Hedenus, F., & Sonesson, U. (2016). How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy, 59, 152–164. https://doi.org/10.1016/j.foodpol.2015.12.012
  • Chan, S., Hale, T., Deneault, A., Shrivastava, M., Mbeva, K., Chengo, V., & Atela, J. (2022). Assessing the effectiveness of orchestrated climate action from five years of summits. Nature Climate Change, 12(7), 628–633. https://doi.org/10.1038/s41558-022-01405-6
  • Chang, J., Peng, S., Yin, Y., Ciais, P., Havlik, P., & Herrero, M. (2021). The Key role of production efficiency changes in livestock methane emission mitigation. AGU Advances, 2(2), e2021AV000391. https://doi.org/10.1029/2021AV000391
  • Chepeliev, M., Aguiar, A., &. (2019). Global greenhouse gas taxes on food products: Economy-wide, environmental and dietary implications. Trading for good - agricultural trade in the context of climate change adaptation and mitigation … symposium, International Agricultural Trade Research Consortium, Seville, Spain, June 23-25, 2019. https://doi.org/10.22004/ag.econ.312579
  • Chepeliev, M., Aguiar, A., & van der Mensbrugghe, D. (2018). Climate change impacts on agriculture using improved multi-region input-output framework. SSRN Electronic Journal, https://doi.org/10.2139/ssrn.3231252
  • Clark, M., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., Azevedo, I. L., & Hill, J. D. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science, 370(6517), 705–708. https://doi.org/10.1126/science.aba7357
  • Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. https://doi.org/10.1088/1748-9326/aa6cd5
  • Costa, L., Moreau, V., Thurm, B., Yu, W., Clora, F., Baudry, G., Warmuth, H., Hezel, B., Seydewitz, T., Ranković, A., Kelly, G., & Kropp, J. P. (2021). The decarbonisation of Europe powered by lifestyle changes. Environmental Research Letters, 16(4), 044057. https://doi.org/10.1088/1748-9326/abe890
  • Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016-021-00225-9
  • Danish Government and Folketing Parties. (2021). Agreement on green conversion of Danish agriculture.
  • Doelman, J. C., Stehfest, E., Tabeau, A., & van Meijl, H. (2019). Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 23, 93–103. https://doi.org/10.1016/j.gfs.2019.04.003
  • Dumortier, J., & Elobeid, A. (2021). Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change. Land Use Policy, 103, 105320. https://doi.org/10.1016/j.landusepol.2021.105320
  • Earth Negotiations Bulletin. (2021). Glasgow climate change conference: Wednesday, 3 November 2021, Vol. 12 No. 785.
  • Eker, S., Rovenskaya, E., Obersteiner, M., & Langan, S. (2018). Practice and perspectives in the validation of resource management models. Nature Communications, 9(1), 5359. https://doi.org/10.1038/s41467-018-07811-9
  • FAO. (2016). The agriculture sectors in the intended nationally determined contributions - Analysis. Environment and Natural Resources Management Working Paper No. 62 92.
  • FAO. (2021a). 2021 (Interim) Global update report: Agriculture, forestry and fisheries in the nationally determined contributions. FAO. https://doi.org/10.4060/cb7442en.
  • FAO. (2021b). Is Koronivia joint work on agriculture shaping up to be a game changer at COP27? [WWW Document]. URL Retrieved June 23, 2022, from https://www.fao.org/climate-change/news/detail/en/c/1456122/
  • FAO. (2022a). FAOstat, climate change, emissions totals, Last update: January 14, 2022, Retrieved January 15, 2022, from https://www.fao.org/faostat/en/#data/GT
  • FAO. (2022b). FAOstat, climate change, emissions shares, Last update: January 14, 2022, Retrieved January 15, 2022, from https://www.fao.org/faostat/en/#data/EM
  • Federal Ministry for the Enviroment, Nature Conservation, Nuclear Safety and Consumer Protection (German). (2021). Federal climate change act.
  • Fenhann, J. (2021). Pledge pipeline climate change [WWW Document]. URL https://www.unep.org/explore-topics/climate-change/what-we-do/mitigation/pledge-pipeline
  • Fiorino, D. J. (2011). Explaining national environmental performance: Approaches, evidence, and implications. Policy Sciences, 44(4), 367–389. https://doi.org/10.1007/s11077-011-9140-8
  • Frank, S., Havlík, P., Soussana, J.-F., Levesque, A., Valin, H., Wollenberg, E., Kleinwechter, U., Fricko, O., Gusti, M., Herrero, M., Smith, P., Hasegawa, T., Kraxner, F., & Obersteiner, M. (2017). Reducing greenhouse gas emissions in agriculture without compromising food security? Environmental Research Letters, 12(10), 105004. https://doi.org/10.1088/1748-9326/aa8c83
  • Frank, S., Havlík, P., Stehfest, E., van Meijl, H., Witzke, P., Pérez-Domínguez, I., van Dijk, M., Doelman, J. C., Fellmann, T., Koopman, J. F. L., Tabeau, A., & Valin, H. (2019). Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 9(1), 66–72. https://doi.org/10.1038/s41558-018-0358-8
  • Godde, C. M., Mason-D’Croz, D., Mayberry, D. E., Thornton, P. K., & Herrero, M. (2021). Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 28, 100488. https://doi.org/10.1016/j.gfs.2020.100488
  • Golub, A., Henderson, B., Hertel, T., Rose, S., Avetisyan, M., & Sohngen, B. (2010). Effects of the GHG mitigation policies on livestock sectors. GTAP Working Paper 53.
  • Government of Ireland: Department of the Environment, Climate and Communications. (2021). Climate action plan 2021 (Ireland).
  • Grantham Research Institute on Climate Change and the Environment, Sabin Center for Climate, Change Law. (2022). Climate change laws of the world database [WWW Document]. URL https://climate-laws.org/
  • Gurgel, A. C., Paltsev, S., & Breviglieri, G. V. (2019). The impacts of the Brazilian NDC and their contribution to the Paris agreement on climate change. Environment and Development Economics, 24((04|4)), 395–412. https://doi.org/10.1017/S1355770X1900007X
  • Gütschow, J., Günther, A., & Pflüger, M. (2021). The PRIMAP-hist national historical emissions time series (1750-2019) v2.3.1. https://doi.org/10.5281/zenodo.5494497
  • Han, M., Yu, W., & Clora, F. (2022). Boom and bust in China’s Pig sector during 2018–2021: Recent recovery from the ASF shocks and longer-term sustainability considerations. Sustainability, 14(11), 6784. https://doi.org/10.3390/su14116784
  • Hart, K., Allen, B., Keenleyside, C., Nanni, S., Maréchal, A., Paquel, K., Nesbit, M., & Ziemann, J. (2017). The consequences of climate change for EU agriculture: Follow-up to the COP21 UN Paris Climate Change Conference 136.
  • Hasegawa, T., Fujimori, S., Havlík, P., Valin, H., Bodirsky, B. L., Doelman, J. C., Fellmann, T., Kyle, P., Koopman, J. F. L., Lotze-Campen, H., Mason-D’Croz, D., Ochi, Y., Pérez Domínguez, I., Stehfest, E., Sulser, T. B., Tabeau, A., Takahashi, K., Takakura, J., Van Meijl, H., … Witzke, P. (2018). Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 8(8), 699–703. https://doi.org/10.1038/s41558-018-0230-x
  • Henderson, B., & Verma, M. (2021). Global assessment of the carbon leakage implications of carbon taxes on agricultural emissions. https://doi.org/10.1787/fc304fad-en
  • Höhne, N., den Elzen, M., & Escalante, D. (2014). Regional GHG reduction targets based on effort sharing: A comparison of studies. Climate Policy, 14(1), 122–147. https://doi.org/10.1080/14693062.2014.849452
  • Hönle, S. E., Heidecke, C., & Osterburg, B. (2019). Climate change mitigation strategies for agriculture: An analysis of nationally determined contributions, biennial reports and biennial update reports. Climate Policy, 19(6), 688–702. https://doi.org/10.1080/14693062.2018.1559793
  • Huang, Z. (1998). Extensions to the k-Means algorithm for clustering large data sets with categorical values.
  • Institute for Global Environmental Strategies (IGES). (2021). Nationally determined contributions (NDC) database, version 7.4 [WWW Document]. URL Retrieved April 8, 2021, from https://pub.iges.or.jp/pub/iges-ndc-database
  • IPCC. (2022). Technical summary, climate change 2022: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
  • IPCC. (2023). AR6 Synthesis Report: Climate Change 2023.
  • Lachapelle, E., & Paterson, M. (2013). Drivers of national climate policy. Climate Policy, 13(5), 547–571. https://doi.org/10.1080/14693062.2013.811333
  • Lamb, W. F., Grubb, M., Diluiso, F., & Minx, J. C. (2022). Countries with sustained greenhouse gas emissions reductions: An analysis of trends and progress by sector. Climate Policy, 22(1), 1–17. https://doi.org/10.1080/14693062.2021.1990831
  • La Rovere, E. L., Pereira, A. O., Dubeux, C. B. S., & Wills, W. (2014). Climate change mitigation actions in Brazil. Climate and Development, 6(sup1), 25–33. https://doi.org/10.1080/17565529.2013.812952
  • Ministerie van Economische Zaken en Klimaat (Netherlands). (2019). National climate agreement [WWW Document]. URL Retrieved February 9, 2022, from https://www.klimaatakkoord.nl/documenten/publicaties/2019/06/28/national-climate-agreement-the-netherlands
  • Mosnier, A., Javalera-Rincon, V., Jones, S. K., Andrew, R., Bai, Z., Baker, J., Basnet, S., Boer, R., Chavarro, J., Costa, W., Daloz, A. S., DeClerck, F. A., Diaz, M., Douzal, C., Fan, A. C. H., Fetzer, I., Frank, F., Gonzalez-Abraham, C. E., Habiburrachman, A. H. F., … Zerriffi, H. (2023). A decentralized approach to model national and global food and land use systems. Environmental Research Letters, 18(4), 045001. https://doi.org/10.1088/1748-9326/acc044
  • Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason d’Croz, D., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., … Willenbockel, D. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences, 111(9), 3274–3279. https://doi.org/10.1073/pnas.1222465110
  • OECD. (2019). Enhancing the mitigation of climate change though agriculture: Policies, economic consequences, and trade-offs. https://doi.org/10.1787/e9a79226-en
  • OECD. (2022). Agricultural policy monitoring and evaluation 2022: Reforming agricultural policies for climate change mitigation. Organisation for Economic Co-operation and Development.
  • Porter, J. R., Howden, M., & Smith, P. (2017). Considering agriculture in IPCC assessments. Nature Climate Change, 7(10), 680–683. https://doi.org/10.1038/nclimate3404
  • Richards, M. B., Wollenberg, E., & van Vuuren, D. (2018). National contributions to climate change mitigation from agriculture: Allocating a global target. Climate Policy, 18(10), 1271–1285. https://doi.org/10.1080/14693062.2018.1430018
  • Richards, M. B., Wollenberg, E. K., & Buglion-Gluck, S. (2015). Agriculture’s contribution to national emissions.
  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110
  • Sachs, J., Lafortune, G., Kroll, C., Fuller, G., & Woelm, F. (2022). From crisis to sustainable development: The SDGs as roadmap to 2030 and beyond. Sustainable Development Report 2022. CAMBRIDGE UNIV PRESS UK., CAMBRIDGE.
  • The Ministry of Agriculture, Livestock, and Food Supply (Brazilian). (2021). PLANO SETORIAL PARA ADAPTAÇÃO À MUDANÇA DO CLIMA E BAIXA EMISSÃO DE CARBONO NA AGROPECUÁRIA 2020–2030 [WWW Document]. URL Retrieved July 14, 2022, from https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/final-isbn-plano-setorial-para-adaptacao-a-mudanca-do-clima-e-baixa-emissao-de-carbono-na-agropecuaria-compactado.pdf
  • Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581
  • Tubiello, F. N., Salvatore, M., Ferrara, A. F., House, J., Federici, S., Rossi, S., Biancalani, R., Condor Golec, R. D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz Sanchez, M. J., Srivastava, N., & Smith, P. (2015). The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Global Change Biology, 21(7), 2655–2660. https://doi.org/10.1111/gcb.12865
  • UNFCCC. (2022a). Nationally determined contributions under the Paris Agreement. Synthesis report by the secretariat. FCCC/PA/CMA/2022/4.
  • UNFCCC. (2022b). Greenhouse Gas Inventory Data [WWW Document]. URL Retrieved July 11, 2022, from https://di.unfccc.int/detailed_data_by_party
  • UNFCCC. (2022c). NDC Registry [WWW Document]. URL Retrieved August 11, 2022, from https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx
  • US EPA. (2019). Global Non-CO2 greenhouse gas emission projections & mitigation potential: 2015–2050 [WWW Document]. URL Retrieved January 9, 2023, from https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-greenhouse-gas-emission-projections
  • van Beek, L., Oomen, J., Hajer, M., Pelzer, P., & van Vuuren, D. (2022). Navigating the political: An analysis of political calibration of integrated assessment modelling in light of the 1.5 °C goal. Environmental Science & Policy, 133, 193–202. https://doi.org/10.1016/j.envsci.2022.03.024
  • van Meijl, H., Havlik, P., Lotze-Campen, H., Stehfest, E., Witzke, P., Domínguez, I. P., Bodirsky, B. L., van Dijk, M., Doelman, J., Fellmann, T., Humpenöder, F., Koopman, J. F. L., Müller, C., Popp, A., Tabeau, A., Valin, H., & van Zeist, W.-J. (2018). Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 13(6), 064021. https://doi.org/10.1088/1748-9326/aabdc4
  • Vyas, S., Khatri-Chhetri, A., Aggarwal, P., Thornton, P., & Campbell, B. (2022). Perspective: The gap between intent and climate action in agriculture [WWW Document]
  • Winkler, H., Mantlana, B., & Letete, T. (2017). Transparency of action and support in the Paris agreement. Climate Policy, 17(7), 853–872. https://doi.org/10.1080/14693062.2017.1302918
  • Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N., Herold, M., Gerber, P., Carter, S., Reisinger, A., van Vuuren, D. P., Dickie, A., Neufeldt, H., Sander, B. O., Wassmann, R., Sommer, R., Amonette, J. E., Falcucci, A., Herrero, M., … Campbell, B. M. (2016). Reducing emissions from agriculture to meet the 2 °C target. Global Change Biology, 22(12), 3859–3864. https://doi.org/10.1111/gcb.13340
  • Yu, W.. (2017). How China’s farm policy reforms could affect trade and markets: A focus on grains and cotton. Geneva: International Centre for Trade and Sustainable Development (ICTSD).
  • Zhang, X., Yao, G., Vishwakarma, S., Dalin, C., Komarek, A. M., Kanter, D. R., Davis, K. F., Pfeifer, K., Zhao, J., Zou, T., D’Odorico, P., Folberth, C., Rodriguez, F. G., Fanzo, J., Rosa, L., Dennison, W., Musumba, M., Heyman, A., & Davidson, E. A. (2021). Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 4(9), 1262–1277. https://doi.org/10.1016/j.oneear.2021.08.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.