710
Views
57
CrossRef citations to date
0
Altmetric
Research Papers

Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data

&
Pages 1293-1314 | Received 11 Nov 2013, Accepted 10 Nov 2014, Published online: 11 May 2015

References

  • Aït-Sahalia, Y., Cacho-Diaz, J. and Laeven, R.J.A., Modeling financial contagion using mutually exciting jump processes. NBER Working Paper No. 15850, 2011. doi:10.3386/w15850.
  • Akaike, H., A new look at the statistical model identification. IEEE Trans. Automatic Control, 1974, 19, 716–723.
  • Almgren, R., High-frequency event analysis in eurex interest rate futures. Working Paper, Quantitative Brokers, 2012.
  • Arneodo, A., Muzy, J.F. and Sornette, D., ‘Direct’ causal cascade in the stock market. Eur. Phys. J. B -- Cond. Matter Comp. Syst., 1998, 2, 277–282.
  • Bacry, E., Dayri, K. and Muzy, J.F., Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data. Eur. Phys. J. B -- Cond. Matter Comp. Syst., 2012, 85, 157.
  • Bacry, E., Delattre, S., Hoffmann, M. and Muzy, J.F., Modeling microstructure noise with mutually exciting point processes. Quant. Finance, 2013, 13, 65–77.
  • Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A. and Shephard, N., Realized kernels in practice: Trades and quotes. Econ. J., 2009, 12, C1–C32.
  • Bauwens, L. and Hautsch, N., Modelling financial high frequency data using point processes. In Handbook of Financial Time Series, edited by T. Mikosch, J.P. Kreiß, R.A. Davis and T.G. Andersen, pp. 953–979, 2009 (Springer-Verlag: Berlin).
  • Bowsher, C.G., Modelling security market events in continuous time: Intensity based, multivariate point process models. J. Econ., 2007, 141, 876–912.
  • Brownlees, C.T. and Gallo, G.M., Financial econometric analysis at ultra-high frequency: Data handling concerns. Phys. A: Stat. Mech. Appl., 2006, 51, 2232–2245.
  • Cont, R., Statistical modeling of high frequency financial data: Facts, models and challenges. IEEE Signal Process., 2011, 28, 16–25.
  • Dacorogna, M.M., Gencay, R., Müller, U.A., Olsen, R.B. and Pictet, O.V., An Introduction to High-frequency Finance, 2001 (Academic Press: San Diego, CA).
  • Eisler, Z. and Kertész, J., Size matters: Some stylized facts of the stock market revisited. Eur. Phys. J. B -- Cond. Matter Comp. Syst 2006, 51, 145–154.
  • Embrechts, P., Liniger, T. and Lu, L., Multivariate Hawkes processes: An application to financial data. J. Appl. Prob., 2011, 48A, 367–378.
  • Errais, E., Giesecke, K. and Goldberg, L.R., Affine point processes and portfolio credit risk. SIAM J. Financ. Math., 2010, 1, 642–665.
  • Falkenberry, T.N., High frequency data filtering. Technical report, Tick Data Inc., 2002.
  • Filimonov, V., Bicchetti, D., Maystre, N. and Sornette, D., Quantification of the high level of endogeneity and of structural regime shifts in commodity markets. J. Int. Money Finance, 2014, 42, 174–192. doi:10.1016/j.jimonfin.2013.08.010.
  • Filimonov, V. and Sornette, D., Self-excited multifractal dynamics. Europhys. Lett., 2011, 94, 46003.
  • Filimonov, V. and Sornette, D., Quantifying reflexivity in financial markets: Toward a prediction of flash crashes. Phys. Rev. E, 2012, 85, 056108.
  • Filimonov, V. and Sornette, D., A stable and robust calibration scheme of the log-periodic power law model. Phys. A: Stat. Mech. Appl., 2013, 392, 3698–3707.
  • Filimonov, V., Wheatley, S. and Sornette, D., Effective measure of reflexivity of the self-excited Hawkes and Autoregressive Conditional Duration point processes. Working Paper, pp. 1–14, 2013.
  • Gourieroux, C. and Jasiak, J., Nonlinear autocorrelograms: An application to inter-trade durations. J. Time Ser. Anal., 2002, 23 (2), 127–154.
  • Hardiman, S.J., Bercot, N. and Bouchaud, J.P., Critical reflexivity in financial markets: A Hawkes process analysis. Eur. Phys. J. B -- Cond. Matter Comp. Syst., 2013, 86, 442.
  • Hawkes A.G., Point spectra of some mutually exciting point processes. J. Roy. Stat. Soc. Ser. B (Methodological), 1971a, 33, 438–443.
  • Hawkes A.G., Spectra of some self-exciting and mutually exciting point processes. Biometrika, 1971b, 58, 83–90.
  • Hawkes, A.G. and Oakes, D., A cluster process representation of a self-exciting process. J. Appl. Prob., 1974, 11, 493–503.
  • Helmstetter, A. and Sornette, D., Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res., 2002, 107, 2237.
  • Helmstetter, A. and Sornette, D., Importance of direct and indirect triggered seismicity in the ETAS model of seismicity. Geophys. Res. Lett., 2003, 30, 1576.
  • Hewlett, P., Clustering of order arrivals, price impact and trade path optimisation. Workshop on Financial Modeling with Jump processes, Ecole Polytechnique, Paris, 2006.
  • Ivanov, P.C.C., Yuen, A., Podobnik, B. and Lee, Y., Common scaling patterns in intertrade times of U.S. stocks. Phys. Rev. E, 2004, 69, 056107.
  • Jiang, Z.Q., Chen, W. and Zhou, W.X., Scaling in the distribution of intertrade durations of Chinese stocks. Phys. A: Stat. Mech. Appl., 2008, 387, 5818–5825.
  • Jiang, Z.Q., Chen, W. and Zhou, W.X., Detrended fluctuation analysis of intertrade durations. Phys. A: Stat. Mech. Appl., 2009, 388, 433–440.
  • Kagan, Y.Y. and Knopoff, L., Statistical short-term earthquake prediction. Science, 1987, 236, 1563–1563.
  • Knopoff, L. and Kagan, Y.Y., Stochastic synthesis of earthquake catalogs. J. Geophys. Res., 1981, 86, 2853–2862.
  • Large, J., Measuring the resiliency of an electronic limit order book. J. Financ. Markets, 2007, 10, 1–25.
  • Lewis, E. and Mohler, G.O., A nonparametric EM algorithm for multiscale Hawkes processes. Working Paper, University of California, Los Angeles, CA, 2011, 1–16.
  • Lewis, P.A.W. and Shedler, G.S., Simulation of nonhomogeneous poisson processes by thinning. Naval Res. Logis. Quart., 1979, 26, 403–413.
  • Lockwood, J.W., Gupte, A., Blott, M., English, T., Mehta, N. and Vissers, K., A low-latency library in FPGA hardware for high-frequency trading (HFT). Proceedings of the 2012 IEEE 20th Annual Symposium on High-Performance Interconnects (HOTI), IEEE, Santa Clara, CA, 9–16, 2012.
  • Lyubushin, A. and Pisarenko, V., Research on seismic regime using linear model of intensity of interacting point processes. Izv. Phys. Solid Earth, 1994, 29, 1108–1113.
  • Marsan, D. and Lengline, O., Extending earthquakes’ reach through cascading. Science, 2008, 319, 1076–1079.
  • Møller, J. and Rasmussen, J.G., Perfect simulation of Hawkes processes. Adv. Appl. Prob., 2005, 37, 629–646.
  • Møller, J. and Rasmussen, J.G., Approximate simulation of Hawkes processes. Meth. Comput. Appl. Prob., 2006, 8, 53–64.
  • Oakes, D., The Markovian self-exciting process. Appl. Prob. Trust, 1975, 12, 69–77.
  • Ogata, Y., The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann. Inst. Stat. Math., 1978, 30, 243–261.
  • Ogata, Y., On Lewis’ simulation method for point processes. IEEE Trans. Inform. Theory, 1981, 27, 23–31.
  • Ogata, Y., Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc., 1988, 83, 9–27.
  • Oswiecimka, P., Kwapien, J. and Drozdz, S., Multifractality in the stock market: Price increments versus waiting times. Phys. A: Stat. Mech. Appl., 2005, 347, 626–638.
  • Ozaki, T., Maximum likelihood estimation of Hawkes’ self-exciting point processes. Ann. Inst. Stat. Math., 1979, 31, 145–155.
  • Papangelou, F., Integrability of expected increments of point processes and a related random change of scale. Trans. Am. Math. Soc., 1972, 165, 483–506.
  • Politi, M. and Scalas, E., Fitting the empirical distribution of intertrade durations. Phys. A: Stat. Mech. Appl., 2008, 387, 2025–2034.
  • Rosenbrock, H.H., An automatic method for finding the greatest or least value of a function. Comput. J., 1960, 3, 175–184.
  • Saichev, A., Helmstetter, A. and Sornette, D., Anomalous scaling of offspring and generation numbers in branching processes. Pure Appl. Geophys., 2005, 162, 1113–1134.
  • Scalas, E., Kaizoji, T., Kirchler, M., Huber, J. and Tedeschi, A., Waiting times between orders and trades in double-auction markets. Phys. A: Stat. Mech. Appl., 2006, 366, 463–471.
  • Sornette, D. and Utkin, S., Limits of declustering methods for disentangling exogenous from endogenous events in time series with foreshocks, main shocks, and aftershocks. Phys. Rev. E, 2009, 79, 061110.
  • Sornette, D. and Werner, M.J., Apparent clustering and apparent background earthquakes biased by undetected seismicity. J. Geophys. Res., 2005, 110, B09303.
  • Soros, G., The Alchemy of Finance: Reading the Mind of the Market, 1987 (John Wiley & Sons: New York).
  • Talbi, E.G., Metaheuristics: From Design to Implementation, 2009 (Wiley: Hoboken, NJ).
  • Toke, I.M., ‘Market making’ in an order book model and its impact on the spread. In Econophysics of Order-driven Markets, edited by F. Abergel, B.K. Chakrabarti, A. Chakraborti, and M. Mitra, pp. 49–64, 2011 (Springer Verlag: Milan).
  • Utsu, T., A statistical study of the occurrence of aftershocks. Geophys. Mag., 1961, 30, 521–605.
  • Utsu, T. and Ogata, Y., The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth, 1995, 41, 1–33.
  • Veen, A. and Schoenberg, F.P., Estimation of space-time branching process models in seismology using an EM-type algorithm. J. Am. Stat. Assoc., 2008, 103, 614–624.
  • Vere-Jones, D., Stochastic models for earthquake occurrence. J. Roy. Stat. Soc. Ser. B (Methodological), 1970, 32, 1–62.
  • Vere-Jones, D. and Ozaki, T., Some examples of statistical estimation applied to earthquake data I. Cyclic Poisson and self-exciting models. Ann. Inst. Stat. Math., 1982, 34, 189–207.
  • Wilks, S.S., The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat., 1938, 9, 60–62.
  • Zhuang, J., Ogata, Y. and Vere-Jones, D., Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc., 2002, 97, 369–380.
  • Zhuang, J., Ogata, Y. and Vere-Jones, D., Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res., 2004, 109, B05301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.