323
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

A novel Monte Carlo approach to hybrid local volatility models

, &
Pages 1347-1366 | Received 19 Apr 2016, Accepted 30 Dec 2016, Published online: 10 Mar 2017

References

  • Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed., 1972 (Dover: New York).
  • Andersen, L., Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance, 2008, 11, 1–42.
  • An, Y. and Li, C., Approximating local volatility functions of stochastic volatility models: A closed-form expansion approach. Probab. Eng. Inf. Sci., 2015, 29, 547–563.
  • Atlan, M., Localizing volatilities. ArXiV preprint math/0604316, 2006.
  • Babuška, I., Nobile, F. and Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 2007, 45, 1005–1034.
  • Baker, G., Beneder, R. and Zilber, A., FX barriers with smile dynamics. 2004. Available at SSRN 964627.
  • Beck, J., Tempone, R., Nobile, F. and Tamellini, L., On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci., 2012, 22, 1–33.
  • Benhamou, E., Gobet, E. and Miri, M., Analytical formulas for a local volatility model with stochastic rates. Quant. Finance, 2012, 12, 185–198.
  • Benhamou, E., Rivoira, A. and Gruz, A., Stochastic interest rates for local volatility hybrids models. Wilmott Mag., 2008, March, 74–80.
  • Black, F. and Karasinski, P., Bond and option pricing when short rates are lognormal. Financ. Anal. J., 1991, 47, 52–59.
  • Bloch, D.A. and Nakashima, Y., Multi-currency local volatility model. 2008. Available at SSRN 1153337.
  • Cameron, R.H. and Martin, W.T., The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math., 1947, 48, 385–392.
  • Clark, I.J., Foreign Exchange Option Pricing: A Practitioners Guide, 2011 (Wiley: Hoboken, NJ).
  • Deelstra, G. and Rayée, G., Local volatility pricing models for long-dated FX derivatives. Appl. Math. Finance, 2012, 20, 380–402.
  • Derman, E., Ergener, D. and Kani, I., Static options replication. J. Derivatives, 1995, 2, 78–95.
  • Derman, E. and Kani, I., Stochastic implied trees: Arbitrage pricing with stochastic term and strike structure of volatility. Int. J. Theor. Appl. Finance, 1998, 1, 61–110.
  • Dupire, B., Pricing with a smile. Risk, 1994, 7, 18–20.
  • Dupire, B., A unified theory of volatility. InDerivatives Pricing: Classic Collection, edited by P. Carr, 2004 (Risk Books: London).
  • Fouque, J.P., Papanicolaou, G. and Sircar, K., Stochastic volatility correction to Black-Scholes. Risk, 2000, 13, 89–92.
  • Ganapathysubramanian, B. and Zabaras, N., Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys., 2007, 225, 652–685.
  • Gatheral, J., The Volatility Surface: A Practitioner’s Guide, 2006 (Wiley: Hoboken, NJ).
  • Greene, W.H., Econometric Analysis, 5th ed., 2002 (Prentice Hall Inc.: Upper Saddle River, NJ).
  • Grzelak, L.A. and Oosterlee, C.W., On the Heston model with stochastic interest rates. SIAM J. Financ. Math., 2011, 2, 255–286.
  • Grzelak, L.A. and Oosterlee, C.W., On cross-currency models with stochastic volatility and correlated interest rates. Appl. Math. Finance, 2012, 19, 1–35.
  • Grzelak, L.A. and Oosterlee, C.W., From arbitrage to arbitrage-free implied volatilities. J. Comput. Finance, 2016, 20, 1–19.
  • Grzelak, L.A., Witteveen, J.A.S., Suarez-Taboada, M. and Oosterlee, C.W., The stochastic collocation Monte Carlo sampler: Highly efficient sampling from ‘Expensive’ distributions. 2014. Available at SSRN 2529691.
  • Guyon, J. and Henry-Labordère, P., Being particular about calibration. Risk, 2012, 25, 88–93.
  • Gyöngy, I., Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Related Fields, 1986, 71, 501–516.
  • Hagan, P.S., Kumar, D., Lesniewski, A.S. and Woodward, D.E., Managing smile risk. Wilmott Mag., 2002, September, 84–108.
  • Henry-Labordère, P., Calibration of local stochastic volatility models to market smiles: A Monte-Carlo approach. Risk, 2009, September, 112–117.
  • Heston, S.L., A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud., 1993, 6, 327–343.
  • Hull, J. and White, A., One-factor interest-rate models and the valuation of interest-rate derivative securities. J. Financ. Quant. Anal., 1993, 28, 235–254.
  • Jain, S. and Oosterlee, C.W., The stochastic grid bundling method: Efficient pricing of Bermudan options and their greeks. Appl. Math. Comput., 2015, 269, 412–431.
  • Jex, M., Henderson, R. and Wang, D., Pricing exotics under the smile. Risk, 1999, 12, 72–75.
  • Johnson, S. and Lee, H., Capturing the smile. Risk, 2003, 16, 89–95.
  • Lipton, A., The vol smile problem. Risk, 2002, 15, 61–66.
  • Lipton, A., Gal, A. and Lasis, A., Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: Survey and new results. Quant. Finance, 2014, 14, 1899–1922.
  • Lipton, A. and McGhee, W., Universal barriers. Risk, 2002, 15, 81–85.
  • Longstaff, F.A. and Schwartz, E.S., Valuing american options by simulation: A simple least-squares approach. Rev. Financ. Stud., 2001, 14, 113–147.
  • Lorig, M., Pagliarani, S., Pascucci, A., et al., Explicit implied volatilities for multifactor local-stochastic volatility models. Math. Finance, 2015, doi:10.1111/mafi.12105.
  • Mardia, K.V., Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā: Indian J. Stat. Ser. B, 1974, 36, 115–128.
  • Nobile, F., Tempone, R. and Webster, C.G., A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 2008, 46, 2309–2345.
  • Pascucci, A. and Mazzon, A., The forward smile in local-stochastic volatility models. 2015. Available at SSRN.
  • Pelsser, A., Efficient Methods for Valuing Interest Rate Derivatives, 2000 (Springer Science & Business Media: London).
  • Piterbarg, V., Cross-currency exotics: Smiling hybrids. Risk, 2006, 19, 66–71.
  • Piterbarg, V., Markovian projection method for volatility calibration. Risk, 2007, April, 84–89.
  • Rebonato, R., Volatility and Correlation in the Pricing of Equity, FX, and Interest-rate Options, 1999 (Wiley: Chichester).
  • Rebonato, R., McKay, K. and White, R., The SABR/LIBOR market model: Pricing, calibration and hedging for complex interest-rate derivatives. 2011. Available online at: Wiley.com
  • Ren, Y., Madan, D. and Qian, M.Q., Calibrating and pricing with embedded local volatility models. Risk, 2007, 20, 138–143.
  • Sankaran, S. and Marsden, A.L., A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng., 2011, 133, 031001.
  • Schöbel, R. and Zhu, J., Stochastic volatility with an Ornstein-Uhlenbeck process: An extension. Eur. Finance Rev., 1999, 3, 23–46.
  • Steele, J.M., Stochastic Calculus and Financial Applications, Vol. 45, 2001 (Springer Science & Business Media: New York).
  • Tataru, G. and Fisher, T., Stochastic local volatility. Quantitative Development Group, Bloomberg Version, 2010, 1.
  • Tian, Y., Zhu, Z., Lee, G., Klebaner, F. and Hamza, K., Calibrating and pricing with a stochastic-local volatility model. J. Derivatives, 2015, 22, 21–39.
  • Van der Stoep, A.W., Grzelak, L.A. and Oosterlee, C.W., The Heston stochastic-local volatility model: Efficient Monte Carlo simulation. Int. J. Theor. Appl. Finance, 2014, 17, 1450045.
  • Watanabe, S., Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab., 1987, 15, 1–39.
  • Witteveen, J.A.S. and Iaccarino, G., Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput., 2012, 34, A814–A838.
  • Xiu, D., Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys., 2007, 2, 293–309.
  • Xiu, D. and Hesthaven, J.S., High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 2005, 27, 1118–1139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.