499
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Supervised portfolios

, ORCID Icon &
Pages 2275-2295 | Received 08 Nov 2021, Accepted 02 Sep 2022, Published online: 28 Sep 2022

References

  • Ammann, M., Coqueret, G. and Schade, J.-P., Characteristics-based portfolio choice with leverage constraints. J. Bank. Financ., 2016, 70, 23–37.
  • André, E. and Coqueret, G., Dirichlet policies for reinforced factor portfolios. SSRN Working Paper 3726714, 2020.
  • Asness, C.S., Moskowitz, T.J. and Pedersen, L.H., Value and momentum everywhere. J. Finance, 2013, 68(3), 929–985.
  • Baker, M., Bradley, B. and Wurgler, J., Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly. Financ. Anal. J., 2011, 67(1), 40–54.
  • Banz, R.W., The relationship between return and market value of common stocks. J. Financ. Econ., 1981, 9(1), 3–18.
  • Bergstra, J. and Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res., 2012, 13(10), 281–305.
  • Brandt, M.W., Santa-Clara, P. and Valkanov, R., Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns. Rev. Financ. Stud., 2009, 22(9), 3411–3447.
  • Butler, A. and Kwon, R., Integrating prediction in mean–variance portfolio optimization. SSRN Working Paper 3788875, 2021.
  • Campbell, J.Y. and Viceira, L.M., Strategic Asset Allocation: Portfolio Choice for Long-Term Investors, 2002 (Oxford University Press).
  • Cenesizoglu, T. and Timmermann, A., Do return prediction models add economic value? J. Bank. Financ., 2012, 36(11), 2974–2987.
  • Chaieb, I., Langlois, H. and Scaillet, O., Factors and risk premia in individual international stock returns. J. Financ. Econ., 2021, 141(2), 669–692.
  • Chen, A.Y., Most claimed statistical findings in cross-sectional return predictability are likely true. SSRN Working Paper 3912915, 2021.
  • Cong, L.W., Tang, K., Wang, J. and Zhang, Y., Alphaportfolio: Direct construction through deep reinforcement learning and interpretable AI. SSRN Working Paper 3554486, 2022.
  • Coqueret, G., Diversified minimum-variance portfolios. Ann. Finance, 2015, 11(2), 221–241.
  • Coqueret, G., Persistence in factor-based supervised learning models. J. Finance Data Sci., 2022, 8, 12–34.
  • Coqueret, G. and Guida, T., Machine Learning for Factor Investing: R Version, 2020 (CRC Press).
  • Costa, G. and Iyengar, G.N., Distributionally robust end-to-end portfolio construction. Preprint, 2022. arXiv:2206.05134.
  • Diebold, F.X., Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of diebold-mariano tests. J. Bus. Econ. Stat., 2015, 33(1), 1–1.
  • Diebold, F. and Mariano, R., Comparing predictive accuracy. J. Bus. Econ. Stat., 1995, 13(3), 253–63.
  • Elmachtoub, A.N. and Grigas, P., Smart “predict, then optimize”. Manage. Sci., 2022, 68(1), 9–26.
  • Fama, E. and French, K., The cross-section of expected stock returns. J. Finance, 1992, 47(2), 427–465.
  • Fama, E.F. and French, K.R., A five-factor asset pricing model. J. Financ. Econ., 2015, 116(1), 1–22.
  • Fama, E.F. and Kenneth, R., Common risk factors in the returns on stocks and bonds. J. Financ. Econ., 1993, 33(1), 3–56.
  • Freyberger, J., Neuhierl, A. and Weber, M., Dissecting characteristics nonparametrically. Rev. Financ. Stud., 2020, 33(5), 2326–2377.
  • Gârleanu, N. and Pedersen, L.H., Dynamic trading with predictable returns and transaction costs. J. Finance, 2013, 68(6), 2309–2340.
  • Goetzmann, W.N. and Kumar, A., Equity portfolio diversification. Rev. Financ., 2008, 12(3), 433–463.
  • Golosnoy, V. and Gribisch, B., Modeling and forecasting realized portfolio weights. J. Bank. Financ., 2022, 138, 106404.
  • Grinsztajn, L., Oyallon, E. and Varoquaux, G., Why do tree-based models still outperform deep learning on tabular data? Preprint, 2022. arXiv:2207.08815.
  • Gu, S., Kelly, B. and Xiu, D., Empirical asset pricing via machine learning. Rev. Financ. Stud., 2020, 33(5), 2223–2273.
  • Guida, T. and Coqueret, G., Ensemble learning applied to quant equity: gradient boosting in a multifactor framework. In Big Data and Machine Learning in Quantitative Investment, pp. 129–148, 2018 (Wiley).
  • Han, Y., Yang, K. and Zhou, G., A new anomaly: The cross-sectional profitability of technical analysis. J. Financ. Quant. Anal., 2013, 48(5), 1433–1461.
  • Han, Y., Zhou, G. and Zhu, Y., A trend factor: Any economic gains from using information over investment horizons? J. Financ. Econ., 2016, 122(2), 352–375.
  • Han, Y., Liu, Y., Zhou, G. and Zhu, Y., Technical analysis in the stock market: A review. SSRN Working Paper 3850494, 2021.
  • Hansen, P., Lunde, A. and Nason, J., The model confidence set. Econometrica, 2011, 79(2), 453–497.
  • Harvey, C.R., Presidential address: The scientific outlook in financial economics. J. Finance, 2017, 72(4), 1399–1440.
  • Harvey, C.R. and Liu, Y., Uncovering the iceberg from its tip: A model of publication bias and p-hacking. SSRN Working Paper 3865813, 2021.
  • Harvey, C.R., Liechty, J.C., Liechty, M.W. and Müller, P., Portfolio selection with higher moments. Quant. Finance, 2010, 10(5), 469–485.
  • He, X., Cong, L.W., Feng, G. and He, J., Asset pricing with panel trees under global split criteria. SSRN Working Paper 3949463, 2021.
  • Hjalmarsson, E. and Manchev, P., Characteristic-based mean-variance portfolio choice. J. Bank. Financ., 2012, 36(5), 1392–1401.
  • Hull, B. and Qiao, X., A practitioner's defense of return predictability. J. Portf. Manage., 2017, 43(3), 60–76.
  • Jagannathan, R. and Ma, T., Risk reduction in large portfolios: Why imposing the wrong constraints helps. J. Finance, 2003, 58(4), 1651–1683.
  • Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H. and Gasthaus, J., Forecasting with trees. Int. J. Forecast., 2022, forthcoming.
  • Jegadeesh, N. and Titman, S., Returns to buying winners and selling losers: Implications for stock market efficiency. J. Finance, 1993, 48(1), 65–91.
  • Jensen, T.I., Kelly, B.T. and Pedersen, L.H., Is there a replication crisis in finance? J. Finance, 2022, forthcoming.
  • Jorion, P., International portfolio diversification with estimation risk. J. Bus., 1985, 58(3), 259–278.
  • Kan, R. and Smith, D.R., The distribution of the sample minimum-variance frontier. Manage. Sci., 2008, 54(7), 1364–1380.
  • Kelly, B.T., Pruitt, S. and Su, Y., Characteristics are covariances: A unified model of risk and return. J. Financ. Econ., 2019, 134(3), 501–524.
  • Koijen, R.S. and Yogo, M., A demand system approach to asset pricing. J. Polit. Econ., 2019, 127(4), 1475–1515.
  • Krauss, C., Do, X.A. and Huck, N., Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the s&p 500. Eur. J. Oper. Res., 2017, 259(2), 689–702.
  • Langlois, H., A new benchmark for dynamic mean-variance portfolio allocations. SSRN Working Paper 3548138, 2020.
  • Li, X., Sullivan, R.N. and Garcia-Feijóo, L., The low-volatility anomaly: Market evidence on systematic risk vs. mispricing. Financ. Anal. J., 2016, 72(1), 36–47.
  • López de Prado, M., Building diversified portfolios that outperform out of sample. J. Portf. Manage., 2016, 42(4), 59–69.
  • López de Prado, M., Advances in Financial Machine Learning, 2018 (John Wiley & Sons).
  • Makridakis, S., Spiliotis, E. and Assimakopoulos, V., The M5 accuracy competition: Results, findings and conclusions. Int. J. Forecast., 2022, forthcoming.
  • Markowitz, H., Portfolio selection. J. Finance, 1952, 7(1), 77–91.
  • Moody, J., Wu, L., Liao, Y. and Saffell, M., Performance functions and reinforcement learning for trading systems and portfolios. J. Forecast., 1998, 17(5–6), 441–470.
  • Nadarajah, S. and Pogány, T.K., On the distribution of the product of correlated normal random variables. C. R. Math., 2016, 354(2), 201–204.
  • Raffinot, T., Hierarchical clustering-based asset allocation. J. Portf. Manage., 2017, 44(2), 89–99.
  • Rapach, D.E., Strauss, J.K., Tu, J. and Zhou, G., Industry return predictability: A machine learning approach. J. Financ. Data Sci., 2019, 1(3), 9–28.
  • Schapire, R.E., The strength of weak learnability. Mach. Learn., 1990, 5(2), 197–227.
  • Shwartz-Ziv, R. and Armon, A., Tabular data: Deep learning is not all you need. Inf. Fusion, 2022, 81, 84–90.
  • Simon, F., Weibels, S. and Zimmermann, T., Deep parametric portfolio policies. SSRN Working Paper 4150292, 2022.
  • Uysal, S., Li, X. and Mulvey, J.M., End-to-end risk budgeting portfolio optimization with neural networks. SSRN Working Paper 3883614, 2021.
  • Van Dijk, M.A., Is size dead? A review of the size effect in equity returns. J. Bank. Financ., 2011, 35(12), 3263–3274.
  • Welch, I. and Goyal, A., A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud., 2008, 21(4), 1455–1508.
  • White, H., A reality check for data snooping. Econometrica, 2000, September, 68(5), 1097–1126.
  • Zhang, Z., Zohren, S. and Roberts, S., Deep learning for portfolio optimization. J. Financ. Data Sci., 2020a, 2(4), 8–20.
  • Zhang, Z., Zohren, S. and Roberts, S., Deep reinforcement learning for trading. J. Financ. Data Sci., 2020b, 2(2), 25–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.