469
Views
0
CrossRef citations to date
0
Altmetric
Regular papers

The biogeography of climate change risk for Scotland's woodland biodiversity: epiphytes

&
Pages 257-267 | Received 05 Feb 2018, Accepted 17 Sep 2018, Published online: 11 Oct 2018

References

  • Anon. (2006). The Scottish forestry strategy. Edinburgh: Forestry Commission Scotland.
  • Bates, J. W., Bell, J. N. B., & Massara, A. C. (2001). Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 pollution. Atmospheric Environment, 35, 2557–2568. doi: 10.1016/S1352-2310(00)00402-7
  • Binder, M. D., & Ellis, C. J. (2008). Conservation of the rare British lichen Vulpicida pinastri: Changing climate, habitat loss and strategies for mitigation. The Lichenologist, 40, 63–79. doi: 10.1017/S0024282908007275
  • Bogomazova, K. (2018). Identification of species limits: Clarifying the taxonomy and ecology of BAP lichens (Unpublished PhD thesis). University of Aberdeen.
  • Boyce, M. S. (1992). Population viability analysis. Annual Review of Ecology and Systematics, 23, 481–506. doi: 10.1146/annurev.es.23.110192.002405
  • Cardona, O. D., van Aalst, M. K., Birkmann, J., Fordham, M., McGregor, G., Perez, R., … Sinh, B. T. (2012). Determinants of risk: Exposure and vulnerability. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, & M. D. Mastrandrea (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC) (pp. 65–108). Cambridge: Cambridge University Press.
  • Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320, 1458–1460. doi: 10.1126/science.1155365
  • Coppins, A. M., & Coppins, B. J. (2002). Indices of ecological continuity for woodland epiphytic lichen habitats in the British Isles. London: British Lichen Society.
  • Crichton, D. (1999). The risk triangle. In J. Ingleton (Ed.), Natural disaster management (pp. 102–103). London: Tudor Rose.
  • Dalgleish, H. J., Koons, D. N., Hooten, M. B., Moffet, C. A., & Adler, P. B. (2011). Climate influences the demography of three dominant sagebrush steppe plants. Ecology, 92, 75–85. doi: 10.1890/10-0780.1
  • Dal Grande, F., Widmer, I., Wagner, H. H., & Scheidegger, C. (2012). Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Molecular Ecology, 21, 3159–3172. doi: 10.1111/j.1365-294X.2012.05482.x
  • Dennis, R. L. H., & Thomas, C. D. (2000). Bias in butterfly distribution maps: The influence of hot spots and recorder's home range. Journal of Insect Conservation, 4, 73–77. doi: 10.1023/A:1009690919835
  • Dettki, H., & Esseen, P.-A. (1998). Epiphytic macrolichens in managed and natural forest landscapes: A comparison at two spatial scales. Ecography, 21, 613–624. doi: 10.1111/j.1600-0587.1998.tb00554.x
  • Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341, 486–492. doi: 10.1126/science.1237123
  • Dobrowski, S. Z. (2010). A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biology, 17, 1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x
  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. doi: 10.1111/j.1472-4642.2010.00725.x
  • Ellis, C. J. (2013). A risk-based model of climate change threat: Hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany, 91, 1–11. doi: 10.1139/cjb-2012-0171
  • Ellis, C. J. (2018). A mechanistic model of climate change risk: Growth rates and microhabitat specificity for conservation priority woodland epiphytes. Perspectives in Plant Ecology, Evolution and Systematics, 32, 38–48. doi: 10.1016/j.ppees.2018.02.003
  • Ellis, C. J., & Coppins, B. J. (2010). Integrating multiple landscape-scale drivers in the lichen epiphyte response: Climatic setting, pollution regime and woodland spatial-temporal structure. Diversity and Distributions, 16, 43–52. doi: 10.1111/j.1472-4642.2009.00624.x
  • Ellis, C. J., & Eaton, S. (2016). Future non-analogue climates for Scotland’s temperate rainforest. Scottish Geographical Journal, 132, 257–268. doi: 10.1080/14702541.2016.1197964
  • Ellis, C. J., Eaton, S., Theodoropoulos, M., Coppins, B. J., Seaward, M. R. D., & Simkin, J. (2014). Response of epiphytic lichens to 21st century climate change and tree disease scenarios. Biological Conservation, 180, 153–164. doi: 10.1016/j.biocon.2014.09.046
  • Ellis, C. J., Eaton, S., Theodoropoulos, M., Coppins, B. J., Seaward, M. R. D., & Simkin, J. (2015). Lichen epiphyte scenarios. A toolkit of climate and woodland change for the 21st century. Edinburgh: Royal Botanic Garden Edinburgh.
  • Ellis, C. J., Eaton, S., Theodoropoulos, M., & Elliott, K. (2015). Epiphyte communities and indicator species. An ecological guide for Scotland’s woodlands. Edinburgh: Royal Botanic Garden Edinburgh.
  • Ellis, C. J., Yahr, R., & Coppins, B. J. (2011). Archaeobotanical evidence for a massive loss of epiphyte species richness during industrialization in southern England. Proceedings of the Royal Society B, 278, 3482–3489. doi: 10.1098/rspb.2011.0063
  • Ellis, C. J., Yahr, R., & Coppins, B. J. (2018). Quantifying the anthropocene loss of bioindicators for an early industrial region: An equitable baseline for biodiversity restoration. Biodiversity and Conservation, 27, 2363–2377. doi: 10.1007/s10531-018-1541-y
  • Hanski, I., Moilanen, A., & Gyllenberg, M. (1996). Minimum viable metapopulation size. The American Naturalist, 147, 527–541. doi: 10.1086/285864
  • Hawksworth, D. L., & Rose, F. (1970). Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature, 227, 145–148. doi: 10.1038/227145a0
  • Hoffman, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485. doi: 10.1038/nature09670
  • Humphrey, J. W., Davey, S., Peace, A. J., Ferris, R., & Harding, K. (2002). Lichens and bryophyte communities of planted and semi-natural forests in Britain: The influence of site type, stand structure and deadwood. Biological Conservation, 107, 165–180. doi: 10.1016/S0006-3207(02)00057-5
  • Jenkins, G., Murphy, J. M., Sexton, D. M. H., Lowe, J. A., Jones, P., & Kilsby, C. (2010). UK climate projections: Briefing report. Exeter: Met Office Hadley Centre.
  • Jump, A. S., & Peñuelas, J. (2005). Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020. doi: 10.1111/j.1461-0248.2005.00796.x
  • Kuusinen, M., & Siitonen, J. (1998). Epiphytic lichen diversity in old growth and managed Picea abies stands in southern Finland. Journal of Vegetation Science, 9, 283–292. doi: 10.2307/3237127
  • Leimu, R., Mutikainen, P., Koricheva, J., & Fischer, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94, 942–952. doi: 10.1111/j.1365-2745.2006.01150.x
  • Lesica, P., McCune, B., Cooper, S. V., & Hong, W. S. (1991). Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany, 69, 1745–1755. doi: 10.1139/b91-222
  • Matthies, D., Bräuer, I., Maibom, W., & Tscharntke, T. (2004). Population size and the risk of local extinction: Empirical evidence from rare plants. Oikos, 105, 481–488. doi: 10.1111/j.0030-1299.2004.12800.x
  • Moritz, C., & Agudo, R. (2013). The future of species under climate change: Resilience or decline? Science, 341, 504–508. doi: 10.1126/science.1237190
  • Nadyeina, O., Dymytrova, L., Naumovych, A., Postoyalkin, S., Werth, S., Cheenacharoen, S., & Scheidegger, C. (2014). Microclimatic differentiation of gene pools in the Lobaria pulmonaria symbiosis in a primeval forest landscape. Molecular Ecology, 23, 5164–5178. doi: 10.1111/mec.12928
  • Patterson, G., Nelson, D., Robertson, P., & Tullis, J. (2014). Scotland’s native woodlands. Results from the native woodland survey of Scotland. Edinburgh: Forestry Commission Scotland.
  • Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225–245. doi: 10.1016/S0304-3800(00)00322-7
  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–371. doi: 10.1046/j.1466-822X.2003.00042.x
  • Perry, M., & Hollis, D. (2005). The generation of monthly gridded datasets for a range of climatic variables over the UK. International Journal of Climatology, 25, 1041–1054. doi: 10.1002/joc.1161
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
  • Rande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist, 142, 911–927. doi: 10.1086/285580
  • Roberts, A. J., Russel, C., Walker, G. J., & Kirby, K. J. (1992). Regional variation in the origin, extent and composition of Scottish woodland. Botanical Journal of Scotland, 46, 167–189. doi: 10.1080/03746600508684786
  • RoTAP. (2012). Review of transboundary air pollution: Acidification, eutrophication, ground level ozone and heavy metals in the UK. Penicuik: Centre for Ecology and Hydrology.
  • Rull, V. (2009). Microrefugia. Journal of Biogeography, 36, 481–484. doi: 10.1111/j.1365-2699.2008.02023.x
  • Sastre, P., & Lobo, J. M. (2009). Taxonomist survey biases and the unveiling of biodiversity patterns. Biological Conservation, 142, 462–467. doi: 10.1016/j.biocon.2008.11.002
  • Schwartz, M. W. (1992). Modelling the effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodiversity and Conservation, 2, 51–61. doi: 10.1007/BF00055102
  • Sexton, D. M. H., Harris, G. R., & Murphy, J. M. (2010). UKCP09: spatially coherent projections. Exeter: Met Office Hadley Centre.
  • Shaffer, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31, 131–134. doi: 10.2307/1308256
  • Simkin, J. (2012). The BLS database project. The British Lichen Society Bulletin, 111, 8–14.
  • Sletvold, N., Dahlgren, J. P., Øien, D.-I., Moen, A., & Ehrlén, J. (2013). Climate warming alters effects of management on population viability of threatened species. Global Change Biology, 19, 2729–2738. doi: 10.1111/gcb.12167
  • Smith, A. C., Koper, N., Francis, C. M., & Fahrig, L. (2009). Confronting collinearity: Comparing methods for disentangling the effects of habitats loss and fragmentation. Landscape Ecology, 24, 1271–1285. doi: 10.1007/s10980-009-9383-3
  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. doi: 10.1126/science.3287615
  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., … Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148. doi: 10.1038/nature02121
  • Travis, J. M. J. (2003). Climate change and habitat destruction: A deadly anthropogenic cocktail. Proceedings of the Royal Society B, 270, 467–473. doi: 10.1098/rspb.2002.2246
  • Van Herk, C. M., Mathijssen-Spiekman, E. A. M., & De Zwart, D. (2003). Long distance nitrogen air pollution effects on lichens in Europe. The Lichenologist, 35, 347–359. doi: 10.1016/S0024-2829(03)00036-7
  • Vestreng, V., Myhre, G., Fagerli, H., Reis, S., & Tarrasón, L. (2007). Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmospheric Chemistry and Physics, 7, 3663–3681. doi: 10.5194/acp-7-3663-2007
  • Werth, S., & Sork, V. L. (2010). Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina manziesii on three oak species in southern California. American Journal of Botany, 97, 821–830. doi: 10.3732/ajb.0900276
  • Whittet, R., & Ellis, C. J. (2013). Critical tests for lichen indicators of woodland ecological continuity. Biological Conservation, 168, 19–23. doi: 10.1016/j.biocon.2013.09.011
  • Wolseley, P. A., James, P. W., Theobald, M. R., & Sutton, M. A. (2006). Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. The Lichenologist, 38, 161–176. doi: 10.1017/S0024282905005487
  • Woods, R. G., & Coppins, B. J. (2012). A conservation evaluation of British lichens and lichenicolous fungi. Peterborough: Joint Nature Conservation Committee.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.