569
Views
8
CrossRef citations to date
0
Altmetric
Review

Genome editing: the breakthrough technology for inherited retinal disease?

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1245-1254 | Received 20 Dec 2016, Accepted 23 Jun 2017, Published online: 11 Jul 2017

References

  • Ber W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010;29(5):335–375. DOI:10.1016/j.preteyeres.2010.03.004
  • Sullivan LS, Daiger SP. Inherited retinal degeneration: exceptional genetic and clinical heterogeneity. Mol Med Today. 1996;2(9):380–386. DOI:10.1016/S1357-4310(96)10037-X
  • Hoon M, Okawa H, Della Santina L, et al. Functional architecture of the retina: development and disease. Prog Retin Eye Res. 2014;42:44–84. DOI:10.1016/j.preteyeres.2014.06.003
  • Roosing S, Thiadens AAHJ, Hoyng CB, et al. Causes and consequences of inherited cone disorders. Prog Retin Eye Res. 2014;42:1–26. DOI:10.1016/j.preteyeres.2014.05.001
  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–881. DOI:10.1152/physrev.00021.2004
  • Farrar GJ, Kenna P, Redmond R, et al. Autosomal dominant retinitis pigmentosa: localization of a disease gene (RP6) to the short arm of chromosome 6. Genomics. 1991;11(4):870–874.
  • Illing ME, Rajan RS, Bence NF, et al. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem. 2002;277(37):34150–34160. DOI:10.1074/jbc.M204955200
  • Saliba RS, Munro PMG, Luthert PJ, et al. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci. 2002;115(Pt 14):2907–2918.
  • Mendes HF, Van Der Spuy J, Chapple JP, et al. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med. 2005;11(4):177–185. DOI:10.1016/j.molmed.2005.02.007
  • Marlhens F, Bareil C, Griffoin JM, et al. Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet. 1997;17(2):139–141. DOI:10.1038/ng1097-139
  • Li Y, Yu S, Duncan T, et al. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage. Hum Mol Genet. 2015;24(15):4417–4428. DOI:10.1093/hmg/ddv178
  • Bowne SJ, Humphries MM, Sullivan LS, et al. A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement. Eur J Hum Genet. 2011;19(10):1074–1081. DOI:10.1038/ejhg.2011.86
  • Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. Embo J. 1998;17(18):5497–5508. DOI:10.1093/emboj/17.18.5497
  • Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3):503–512. DOI:10.1016/0092-8674(87)90646-5
  • Yang D, Scavuzzo MA, Chmielowiec J, et al. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep. 2016;6(February):21264. DOI:10.1038/srep21264
  • Hirsch ML, Green L, Porteus MH, et al. Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Ther. 2010;17(9):1175–1180. DOI:10.1038/gt.2010.65
  • Li L, Wu LP, Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A. 1992;89(10):4275–4279. DOI:10.1073/pnas.89.10.4275
  • Smith J, Bibikova M, Whitby FG, et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28(17):3361–3369. DOI:10.1093/nar/28.17.3361.
  • Moehle EA, Rock JM, Lee Y-L, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A. 2007;104(9):3055–3060. DOI:10.1073/pnas.0611478104
  • Bibikova M, Carroll D, Segal DJ, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cell Biology. 2001;21(1):289–297. DOI:10.1128/MCB.21.1.289
  • Porteus MH, Baltimore D. Gene Targeting in Human Cells. Science (80-). 2003;300(May):75390. DOI:10.1126/science.1078395
  • Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25(11):1298–1306. DOI:10.1038/nbt1353
  • Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–857. DOI:10.1038/nbt.1562
  • Morbitzer R, Römer P, Boch J, et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci. 2010;107(50):21617–21622. DOI:10.1073/pnas.1013133107.
  • Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–148. DOI:10.1038/nbt.1755
  • Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–734. DOI:10.1038/nbt.1927\rnbt.1927[pii]
  • Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315–6325. DOI:10.1093/nar/gkr188
  • Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71. DOI:10.1038/nature09523.
  • Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–607. DOI:10.1038/nature09886.
  • Jinek M, Chylinski K, Fonfara I, et al. Programmable dual-RNA–guided DNA Endonuclease in adaptive bacterial immunity. Science. 2012;337(August):816–822. 10.1126/science.1225829.
  • Yang L, Esvelt KM, Aach J, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(February):823–827. DOI:10.1126/science.1232033
  • Lombardo A, Cesana D, Genovese P, et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods. 2011;8(10):861–869. DOI:10.1038/nmeth.1674
  • Maresca M, Lin VG, Guo N, et al. Obligate ligation-gated recombination (ObLiGaRe): custom designed nucleases mediated targeted integration through non-homologous end joining. Genome Res. 2012;539–546. DOI:10.1101/gr.145441.112
  • Chinskey ND, Besirli CG, Zacks DN. Retinal cell death and current strategies in retinal neuroprotection. Curr Opin Ophthalmol. 2014;25(3):228–233. DOI:10.1097/ICU.0000000000000043
  • Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–516. DOI:10.1016/S0140-6736(14)61376-3
  • Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17(3):194–200. DOI:10.1038/nrm.2016.10
  • Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19(4):642–649. DOI:10.1038/mt.2010.293
  • Kleinman ME, Kaneko H, Cho WG, et al. Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther. 2012;20(1):101–108. DOI:10.1038/mt.2011.212
  • Naldini L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351–360. DOI:10.1038/nature15818
  • Drack AV, Chung D, Russell S, et al. Results of phase III clinical trial subretinal gene therapy for RPE65-mediated Leber congenital amaurosis (LCA). J Am Assoc Pediatr Ophthalmol Strabismus. 2016;20(4):e4. DOI:10.1016/j.jaapos.2016.07.015
  • Bainbridge JWB, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–2239. DOI:10.1056/NEJMoa0802268
  • Bainbridge JWB, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–1897. DOI:10.1056/NEJMoa1414221
  • Wiley LA, Burnight ER, Songstad AE, et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res. 2015;44:15–35. DOI:10.1016/j.preteyeres.2014.10.002
  • Bassuk AG, Zheng A, Li Y, et al. Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep. 2016;6:19969.10.1038/srep19969.
  • Santos-Ferreira T, Postel K, Stutzki H, et al. Daylight vision repair by cell transplantation. Stem Cells. 2015;33(1):79–90. DOI:10.1002/stem.1824
  • Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103. DOI:10.1038/nature10997
  • Barber AC, Hippert C, Duran Y, et al. Repair of the degenerate retina by photoreceptor transplantation. Pnas. 2013;110(1):354–359. DOI:10.1073/pnas.1212677110/-/DCSupplemental
  • Pearson RA, Gonzalez-Cordero A, West EL, et al. Donor and host photoreceptors engage in material transfer following transplantation of postmitotic photoreceptor precursors. Nat Commun. 2016;7(May):1–15. DOI:10.1038/ncomms13029.
  • Santos-Ferreira T, Llonch S, Borsch O, et al. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat Commun. 2016;7(May):13028. DOI:10.1038/ncomms13028.
  • Singh MS, Balmer J, Barnard AR, et al. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016;7:13537.10.1038/ncomms13537.
  • Yiu G, Tieu E, Nguyen AT, et al. Genomic disruption of VEGF-A expression in human retinal pigment Epithelial cells using CRISPR-Cas9 Endonuclease. Investig Opthalmology Vis Sci. 2016;57(13):5490. DOI:10.1167/iovs.16-20296.
  • Hung SSC, Chrysostomou V, Li F, et al. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Investig Ophthalmol Vis Sci. 2016;57(7):3470–3476. DOI:10.1167/iovs.16-19316.
  • Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2015;24(September):556–563. DOI:10.1038/mt.2015.220.
  • Wilson JH, Wensel TG. The nature of dominant mutations of rhodopsin and implications for gene therapy. Mol Neurobiol. 2003;28(2):149–158. DOI:10.1385/MN:28:2:149
  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016.
  • Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. 2017;8:14716. DOI:10.1038/ncomms14716
  • Markets & Markets. Genome Editing/Genome Engineering Market worth 5.54 Billion USD by 2021. [ Published 2015; Accessed November 20, 2016]. Available from: http://www.marketsandmarkets.com/PressReleases/genome-editing-engineering.asp
  • Maeder ML, Mepani R, Gloskowski SW, et al. Therapeutic correction of an LCA-causing splice defect in the CEP290 gene by CRISPR/Cas-mediated genome editing. Mol Ther. 2015;S51-S52:290.
  • Maeder ML, Mepani R, Gloskowski SW, et al. Therapeutic correction of an LCA-causing splice defect in the CEP290 Gene by CRISPR/Cas-mediated gene editing. In: ASGCT. Washington D.C.: ASGCT 19th Annual Meeting; 2016. http://www.abstractsonline.com/pp8/#!/4077/presentation/1161.
  • Ruan G, Barry E, Yu D, et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther. 2017;25(2):331–341. DOI:10.1016/j.ymthe.2016.12.006
  • Crosetto N, Mitra A, Silva MJ, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 2013;10(October2012):361–365. DOI:10.1038/nmeth.2408
  • Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–1389. DOI:10.1016/j.cell.2013.08.021
  • Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–284. DOI:10.1038/nbt.2808
  • Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–832. DOI:10.1038/nbt.2647
  • Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–495. DOI:10.1038/nature16526
  • Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas System. Cell. 2015;163(3):759–771. DOI:10.1016/j.cell.2015.09.038.
  • Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353:6299.10.1126/science.aaf5573.
  • Zhang X, Liang P, Ding C, et al. Efficient production of gene-modified mice using staphylococcus aureus cas9. Sci Rep. 2016;6(August):32565. DOI:10.1038/srep32565
  • Blenke EO, Evers MJW, Mastrobattista E, et al. CRISPR-Cas9 gene editing: delivery aspects and therapeutic potential. J Control Release. 2016. DOI:10.1016/j.jconrel.2016.08.002.
  • Daiger SP, Rossiter BJF, Greenberg J, et al. Data services and software for identifying genes and mutations causing retinal degeneration. Invest OphthalmolVis Sci. 1998. Available from:: https://sph.uth.edu/RetNet
  • Ablain J, Durand EM, Yang S, et al. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 2015;32(6):756–764. DOI:10.1016/j.devcel.2015.01.032
  • Sluch VM, Davis CO, Ranganathan V, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015;5(October):16595. DOI:10.1038/srep16595
  • Fuller JA, Shaw GC, Bonnet-Wersinger D, et al. A high content screening approach to identify molecules neuroprotective for photoreceptor cells. Adv Exp Med Biol. 2014;801(1):773–781. DOI:10.1007/978-1-4614-3209-8_97
  • Parfitt DA, Lane A, Ramsden CM, et al. Identification and correction of mechanisms underlying inherited blindness in human ipsc-derived optic cups. Cell Stem Cell. 2016;18(6):769–781. DOI:10.1016/j.stem.2016.03.021
  • Ambati J, Ambati BK, Yoo SH, et al. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol. 2003;48(3):257–293. DOI:10.1016/S0039-6257(03)00030-4
  • Patel N, Adewoyin T, Chong NV. Age-related macular degeneration: a perspective on genetic studies. Eye (Lond). 2008;22(6):768–776. DOI:10.1038/sj.eye.6702844
  • Swarts DC, Jore MM, Westra ER, et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature. 2014;507(7491):258–261. DOI:10.1038/nature12971
  • Gaj T, Sirk SJ, Barbas CF. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. 2014;111(1):1–15. DOI:10.1002/bit.25096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.