608
Views
4
CrossRef citations to date
0
Altmetric
Review

Role of the IL-23 pathway in the pathogenesis and treatment of enthesitis in psoriatic arthritis

ORCID Icon, , , &
Pages 787-798 | Received 20 Dec 2019, Accepted 29 Feb 2020, Published online: 12 Mar 2020

References

  • Kaeley GS, Eder L, Aydin SZ, et al., Enthesitis: a hallmark of psoriatic arthritis. Semin Arthritis Rheum. 48(1): 35–43. 2018.
  • Schett G, Lories RJ, D’Agostino MA, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol. 2017;13(12):731–741.
  • Taylor W, Gladman D, Helliwell P, et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 2006;54(8):2665–2673.
  • Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68(Suppl 2):ii1–44.
  • Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet. 2018;391(10136):2273–2284.
  • Reveille JD. The genetic basis of spondyloarthritis. Ann Rheum Dis. 2011;70(Suppl 1):i44–50.
  • Babaie F, Hasankhani M, Mohammadi H, et al. The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: new insights and updates. Immunol Lett. 2018;196:52–62.
  • Reinhardt A, Yevsa T, Worbs T, et al. Interleukin-23-dependent gamma/delta T cells produce Interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 2016;68(10):2476–2486.
  • Sherlock JP, Joyce-Shaikh B, Turner SP, et al., IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 18(7): 1069–1076. 2012.
  • Boutet MA, Nerviani A, Gallo Afflitto G, et al. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: the clinical importance of its divergence in skin and joints. Int J Mol Sci. 2018;19(2):530.
  • Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol. 2018;14(11):631–640.
  • Watad A, Cuthbert RJ, Amital H, et al., Enthesitis: much more than focal insertion point inflammation. Curr Rheumatol Rep. 20(7): 41. 2018.
  • Bridgewood C, Sharif K, Sherlock J, et al. Interleukin-23 pathway at the enthesis: the emerging story of enthesitis in spondyloarthropathy. Immunol Rev. 2020;294(1):27–47. [Epub ahead of print].
  • Kavanaugh A, Puig L, Gottlieb AB, et al., Maintenance of clinical efficacy and radiographic benefit through two years of ustekinumab therapy in patients with active psoriatic arthritis: results from a randomized, placebo-controlled phase III trial. Arthritis Care Res (Hoboken). 67(12): 1739–1749. 2015.
  • McInnes IB, Kavanaugh A, Gottlieb AB, et al., Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 382(9894): 780–789. 2013.
  • Ritchlin C, Rahman P, Kavanaugh A, et al., Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 73(6): 990–999. 2014.
  • Deodhar A, Gottlieb AB, Boehncke WH, et al., Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 391(10136): 2213–2224. 2018.
  • Benjamin M, McGonagle D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv Exp Med Biol. 2009;649:57–70.
  • McGonagle D, Lories RJ, Tan AL, et al. The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 2007;56(8):2482–2491.
  • Jacques P, McGonagle D. The role of mechanical stress in the pathogenesis of spondyloarthritis and how to combat it. Best Pract Res Clin Rheumatol. 2014;28(5):703–710.
  • Benjamin M, Rufai A, Ralphs JR. The mechanism of formation of bony spurs (enthesophytes) in the achilles tendon. Arthritis Rheum. 2000;43(3):576–583.
  • Jacques P, Lambrecht S, Verheugen E, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73(2):437–445.
  • McGonagle D, Marzo-Ortega H, O’Connor P, et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis. 2002;61(6):534–537.
  • Kehl AS, Corr M, Weisman MH. Review: enthesitis: new insights into pathogenesis, diagnostic modalities, and treatment. Arthritis Rheumatol. 2016;68(2):312–322.
  • Polachek A, Li S, Chandran V, et al. Clinical enthesitis in a prospective longitudinal psoriatic arthritis cohort: incidence, prevalence, characteristics, and outcome. Arthritis Care Res (Hoboken). 2017;69(11):1685–1691.
  • Carneiro S, Bortoluzzo A, Goncalves C, et al. Effect of enthesitis on 1505 Brazilian patients with spondyloarthritis. J Rheumatol. 2013;40(10):1719–1725.
  • Dandorfer SW, Rech J, Manger B, et al. Differences in the patient’s and the physician’s perspective of disease in psoriatic arthritis. Semin Arthritis Rheum. 2012;42(1):32–41.
  • Turan Y, Duruoz MT, Cerrahoglu L. Relationship between enthesitis, clinical parameters and quality of life in spondyloarthritis. Joint Bone Spine. 2009;76(6):642–647.
  • Weiss PF, Klink AJ, Behrens EM, et al. Enthesitis in an inception cohort of enthesitis-related arthritis. Arthritis Care Res (Hoboken). 2011;63(9):1307–1312.
  • Mease PJ, Van den Bosch F, Sieper J, et al. Performance of 3 Enthesitis Indices in Patients with Peripheral Spondyloarthritis During Treatment with Adalimumab. J Rheumatol. 2017;44(5):599–608.
  • Marchesoni A, De Marco G, Merashli M, et al. The problem in differentiation between psoriatic-related polyenthesitis and fibromyalgia. Rheumatology (Oxford). 2018;57(1):32–40.
  • Bagel J, Schwartzman S. Enthesitis and dactylitis in psoriatic disease: A guide for dermatologists. Am J Clin Dermatol. 2018;19(6):839–852.
  • Eder L, Aydin SZ, Kaeley GS, et al. Options for assessing joints and entheses in psoriatic arthritis by ultrasonography and magnetic resonance imaging: how to move forward. J Rheumatol Suppl. 2018;94:44–47.
  • Canzoni M, Piga M, Zabotti A, et al. Clinical and ultrasonographic predictors for achieving minimal disease activity in patients with psoriatic arthritis: the UPSTREAM (Ultrasound in PSoriatic arthritis TREAtMent) prospective observational study protocol. BMJ Open. 2018;8(7):e021942.
  • Tom S, Zhong Y, Cook R, et al. Development of a preliminary ultrasonographic enthesitis score in psoriatic arthritis - GRAPPA Ultrasound Working Group. J Rheumatol. 2019;46(4):384–390.
  • Freeston JE, Coates LC, Helliwell PS, et al. Is there subclinical enthesitis in early psoriatic arthritis? A clinical comparison with power doppler ultrasound. Arthritis Care Res (Hoboken). 2012;64(10):1617–1621.
  • Aydin SZ, Bakirci S, Kasapoglu E, et al. The relationship between physical examination and ultrasonography for large entheses is best for the Achilles tendon and patellar tendon origin. J Rheumatol. 2019. DOI: 10.3899/jrheum.190169. [Epub ahead of print].
  • Finzel S, Sahinbegovic E, Kocijan R, et al. Inflammatory bone spur formation in psoriatic arthritis is different from bone spur formation in hand osteoarthritis. Arthritis Rheumatol. 2014;66(11):2968–2975.
  • Simon D, Faustini F, Kleyer A, et al. Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann Rheum Dis. 2016;75(4):660–666.
  • Simon D, Kleyer A, Faustini F, et al. Simultaneous quantification of bone erosions and enthesiophytes in the joints of patients with psoriasis or psoriatic arthritis - effects of age and disease duration. Arthritis Res Ther. 2018;20(1):203.
  • Coates LC, Kavanaugh A, Mease PJ, et al. Group for research and assessment of psoriasis and psoriatic arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheumatol. 2016;68(5):1060–1071.
  • Gossec L, Smolen JS, Ramiro S, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann Rheum Dis. 2016;75(3):499–510.
  • Marchesoni A, Olivieri I, Salvarani C, et al. Recommendations for the use of biologics and other novel drugs in the treatment of psoriatic arthritis: 2017 update from the Italian Society of Rheumatology. Clin Exp Rheumatol. 2017;35(6):991–1010.
  • Singh JA, Guyatt G, Ogdie A, et al. Special article: 2018 American College of Rheumatology/National Psoriasis foundation guideline for the treatment of psoriatic arthritis. Arthritis Rheumatol. 2019;71(1):5–32.
  • Maese J, Diaz Del Campo P, Seoane-Mato D, et al. Effectiveness of conventional disease-modifying antirheumatic drugs in psoriatic arthritis: A systematic review. Reumatol Clin. 2018;14(2):81–89.
  • Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44–51.
  • DeLay ML, Turner MJ, Klenk EI, et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60(9):2633–2643.
  • Burton P, Clayton D, Cardon L, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–1337.
  • Reveille JD. Genetics of spondyloarthritis–beyond the MHC. Nat Rev Rheumatol. 2012;8(5):296–304.
  • Zuo X, Sun L, Yin X, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat Commun. 2015;6(1):6793.
  • Oka A, Mabuchi T, Ikeda S, et al. IL12B and IL23R gene SNPs in Japanese psoriasis. Immunogenetics. 2013;65(11):823–828.
  • Bojko A, Ostasz R, Bialecka M, et al. IL12B, IL23A, IL23R and HLA-C*06 genetic variants in psoriasis susceptibility and response to treatment. Hum Immunol. 2018;79(4):213–217.
  • Wei WH, Massey J, Worthington J, et al. Genotypic variability-based genome-wide association study identifies non-additive loci HLA-C and IL12B for psoriasis. J Hum Genet. 2018;63(3):289–296.
  • Yin X, Low HQ, Wang L, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun. 2015;6(1):6916.
  • Stuart PE, Nair RP, Tsoi LC, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet. 2015;97(6):816–836.
  • Pidasheva S, Trifari S, Phillips A, et al. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One. 2011;6(10):e25038.
  • Di Meglio P, Di Cesare A, Laggner U, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS One. 2011;6(2):e17160.
  • Eiris N, Gonzalez-Lara L, Santos-Juanes J, et al. Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J Dermatol Sci. 2014;75(3):167–172.
  • Ivanova M, Manolova I, Miteva L, et al. Genetic variations in the IL-12B gene in association with IL-23 and IL-12p40 serum levels in ankylosing spondylitis. Rheumatol Int. 2019;39(1):111–119.
  • Zhong L, Wang W, Song H. Complex role of IL-23R polymorphisms on ankylosing spondylitis: a meta-analysis. Expert Rev Clin Immunol. 2018;14(7):635–643.
  • Li K, Huang CC, Randazzo B, et al. HLA-C*06:02 allele and response to IL-12/23 inhibition: results from the ustekinumab phase 3 psoriasis program. J Invest Dermatol. 2016;136(12):2364–2371.
  • Masouri S, Stefanaki I, Ntritsos G, et al. A pharmacogenetic study of psoriasis risk variants in a Greek population and prediction of responses to anti-TNF-alpha and anti-il-12/23 agents. Mol Diagn Ther. 2016;20(3):221–225.
  • Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol. 2001;166(12):7563–7570.
  • Catanoso MG, Boiardi L, Macchioni P, et al. IL-23A, IL-23R, IL-17A and IL-17R polymorphisms in different psoriatic arthritis clinical manifestations in the northern Italian population. Rheumatol Int. 2013;33(5):1165–1176.
  • Hacker G, Redecke V, Hacker H. Activation of the immune system by bacterial CpG-DNA. Immunology. 2002;105(3):245–251.
  • Jacques P, Van Praet L, Carron P, et al. Pathophysiology and role of the gastrointestinal system in spondyloarthritides. Rheum Dis Clin North Am. 2012;38(3):569–582.
  • Matzkies FG, Targan SR, Berel D, et al. Markers of intestinal inflammation in patients with ankylosing spondylitis: a pilot study. Arthritis Res Ther. 2012;14(6):R261.
  • Rizzo A, Guggino G, Ferrante A, et al. Role of subclinical gut inflammation in the pathogenesis of spondyloarthritis. Front Med (Lausanne). 2018;5:63.
  • Rath HC, Herfarth HH, Ikeda JS, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest. 1996;98(4):945–953.
  • Lin P, Bach M, Asquith M, et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One. 2014;9(8):e105684.
  • Asquith M, Elewaut D, Lin P, et al. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28(5):687–702.
  • Asquith M, Rosenbaum JT. The interaction between host genetics and the microbiome in the pathogenesis of spondyloarthropathies. Curr Opin Rheumatol. 2016;28(4):405–412.
  • Gill T, Asquith M, Brooks SR, et al. Effects of HLA-B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis Rheumatol. 2018;70(4):555–565.
  • Asquith M, Davin S, Stauffer P, et al. Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 2017;69(10):1984–1995.
  • Nastasi C, Candela M, Bonefeld CM, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5(1):16148.
  • Berndt BE, Zhang M, Owyang SY, et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol. 2012;303(12):G1384–1392.
  • Rehaume LM, Matigian N, Mehdi AM, et al. IL-23 favours outgrowth of spondyloarthritis-associated pathobionts and suppresses host support for homeostatic microbiota. Ann Rheum Dis. 2019;78(4):494–503.
  • Benham H, Rehaume LM, Hasnain SZ, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 2014;66(7):1755–1767.
  • Aden K, Rehman A, Falk-Paulsen M, et al. Epithelial IL-23R signaling licenses protective IL-22 responses in intestinal inflammation. Cell Rep. 2016;16(8):2208–2218.
  • Fatkhullina AR, Peshkova IO, Dzutsev A, et al. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity. 2018;49(5):943–957 e949.
  • Kontny E, Dmowska-Chalaba J, Kwiatkowska B, et al. Cytokines and integrins related to inflammation of joint and gut in patients with spondyloarthritis and inflammatory bowel disease. Reumatologia. 2017;55(6):276–283.
  • Dmowska-Chalaba J, Kontny E. Inflammatory bowel disease-related arthritis - clinical evaluation and possible role of cytokines. Reumatologia. 2015;53(5):236–242.
  • Berthelot JM, Wendling D. Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine. 2020;87(1):31–36.
  • Berthelot JM, Claudepierre P. Trafficking of antigens from gut to sacroiliac joints and spine in reactive arthritis and spondyloarthropathies: mainly through lymphatics? Joint Bone Spine. 2016;83(5):485–490.
  • Aggarwal A, Sarangi AN, Gaur P, et al. Gut microbiome in children with enthesitis-related arthritis in a developing country and the effect of probiotic administration. Clin Exp Immunol. 2017;187(3):480–489.
  • Shukla A, Gaur P, Aggarwal A. Effect of probiotics on clinical and immune parameters in enthesitis-related arthritis category of juvenile idiopathic arthritis. Clin Exp Immunol. 2016;185(3):301–308.
  • Thomopoulos S, Kim HM, Rothermich SY, et al. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res. 2007;25(9):1154–1163.
  • Watad A, Bridgewood C, Russell T, et al. The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. Front Immunol. 2018;9:2668.
  • Ball J. Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis. 1971;30(3):213–223.
  • Binks D, Matzelle M, Bergin D, et al. The frequency of bone marrow oedema adjacent to the cruciate ligament peri-entheseal vascular channels in inflammatory and degenerative arthritis [abstract]. Arthritis Rheum. 2013;65(Suppl):S25–26.
  • Gonzalez-Chavez SA, Quinonez-Flores CM, Pacheco-Tena C. Molecular mechanisms of bone formation in spondyloarthritis. Joint Bone Spine. 2016;83(4):394–400.
  • Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112(12):3491–3501.
  • Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–163.
  • Rossini M, Viapiana O, Adami S, et al. In patients with rheumatoid arthritis, Dickkopf-1 serum levels are correlated with parathyroid hormone, bone erosions and bone mineral density. Clin Exp Rheumatol. 2015;33(1):77–83.
  • Heiland GR, Appel H, Poddubnyy D, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71(4):572–574.
  • Fassio A, Idolazzi L, Viapiana O, et al. In psoriatic arthritis Dkk-1 and PTH are lower than in rheumatoid arthritis and healthy controls. Clin Rheumatol. 2017;36(10):2377–2381.
  • Fassio A, Gatti D, Rossini M, et al. Secukinumab produces a quick increase in WNT signalling antagonists in patients with psoriatic arthritis. Clin Exp Rheumatol. 2019;37(1):133–136.
  • Quinn JM, Sims NA, Saleh H, et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J Immunol. 2008;181(8):5720–5729.
  • Ono T, Okamoto K, Nakashima T, et al. IL-17-producing gammadelta T cells enhance bone regeneration. Nat Commun. 2016;7(1):10928.
  • El-Zayadi AA, Jones EA, Churchman SM, et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology (Oxford). 2017;56(3):488–493.
  • Tu B, Liu S, Liu G, et al. Macrophages derived from THP-1 promote the osteogenic differentiation of mesenchymal stem cells through the IL-23/IL-23R/beta-catenin pathway. Exp Cell Res. 2015;339(1):81–89.
  • Bridgewood C, Watad A, Russell T, et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann Rheum Dis. 2019;78(7):929–933.
  • Sherlock JP, Buckley CD, Cua DJ. The critical role of interleukin-23 in spondyloarthropathy. Mol Immunol. 2014;57(1):38–43.
  • Rossini M, Viapiana O, Adami S, et al. Focal bone involvement in inflammatory arthritis: the role of IL17. Rheumatol Int. 2016;36(4):469–482.
  • McGonagle DG, McInnes IB, Kirkham BW, et al. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann Rheum Dis. 2019;78(9):1167–1178.
  • Deodhar A, Gensler LS, Sieper J, et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 2019;71(2):258–270.
  • Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–776.
  • Raychaudhuri SP. Role of IL-17 in psoriasis and psoriatic arthritis. Clin Rev Allergy Immunol. 2013;44(2):183–193.
  • Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017;376(10):957–970.
  • Smith JA, Colbert RA. Review: the interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: th17 and beyond. Arthritis Rheumatol. 2014;66(2):231–241.
  • Cuthbert RJ, Fragkakis EM, Dunsmuir R, et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 2017;69(9):1816–1822.
  • Adamopoulos IE, Tessmer M, Chao CC, et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol. 2011;187(2):951–959.
  • European Medicines Agency. Stelara (ustekinumab) 45 mg and 90 mg solution for injection: summary of product characteristics. [cited 2019 Oct 8]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/stelara.
  • Kavanaugh A, Puig L, Gottlieb AB, et al., Maintenance of clinical efficacy and radiographic benefit through two years of ustekinumab therapy in patients with active psoriatic arthritis: results from a randomized, placebo-controlled phase III trial. Arthritis Care Res (Hoboken). 67(12): 1739–1749. 2015.
  • McInnes IB, Kavanaugh A, Gottlieb AB, et al., Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 382(9894): 780–789. 2013.
  • Ritchlin C, Rahman P, Kavanaugh A, et al., Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 73(6): 990–999. 2014.
  • McInnes IB, Puig L, Gottlieb AB, et al. Association between enthesitis and health-related quality of life in psoriatic arthritis in biologic-naive patients from 2 phase III ustekinumab trials. J Rheumatol. 2019;46(11):1458–1461.
  • Araujo EG, Englbrecht M, Hoepken S, et al. Effects of ustekinumab versus tumor necrosis factor inhibition on enthesitis: results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Semin Arthritis Rheum. 2019;48(4):632–637.
  • Almirall M, Rodriguez J, Mateo L, et al. Treatment with ustekinumab in a Spanish cohort of patients with psoriasis and psoriatic arthritis in daily clinical practice. Clin Rheumatol. 2017;36(2):439–443.
  • Michel M, Reguiai Z, Fauconier M, et al. [Efficacy and safety of ustekinumab in psoriatic arthritis after anti-TNFalpha failure in routine practice]. Therapie. 2016;71(3):281–286.
  • Napolitano M, Costa L, Caso F, et al. Minimal disease activity in patients with psoriatic arthritis treated with ustekinumab: results from a 24-week real-world study. Clin Rheumatol. 2017;36(7):1589–1593.
  • Queiro R, Brandy A, Rosado MC, et al. Minimal disease activity and patient-acceptable symptom state in psoriatic arthritis: A real-world evidence study with ustekinumab. J Clin Rheumatol. 2018;24(7):381–384.
  • Chimenti MS, Ortolan A, Lorenzin M, et al., Effectiveness and safety of ustekinumab in naive or TNF-inhibitors failure psoriatic arthritis patients: a 24-month prospective multicentric study. Clin Rheumatol. 37(2): 397–405. 2018.
  • Añón Oñate I, Notario Ferreira I, Pérez Albaladejo L, et al. AB0924 Efficacy of subcutaneous ustekinumab therapy in patients with psoriatic arthritis: a single centre-study. Ann Rheum Dis. 2018;77(Suppl 2):1587.
  • Iannone F, Santo L, Bucci R, et al. Drug survival and effectiveness of ustekinumab in patients with psoriatic arthritis. Real-life data from the biologic Apulian registry (BIOPURE). Clin Rheumatol. 2018;37(3):667–675.
  • Picerno V, Scarano E, Tataranni M, et al. Proximal patellar enthesitis treatment with ustekinumab in a patient with psoriatic arthritis: significant response documented by ultrasound and magnetic resonance imaging. Rheumatology (Oxford). 2019;58(10):1879–1882.
  • Savage L, Goodfield M, Horton L, et al., Regression of peripheral subclinical enthesopathy in therapy-naive patients treated with ustekinumab for moderate-to-severe chronic plaque psoriasis: A fifty-two-week, prospective, open-label feasibility study. Arthritis Rheumatol. 71(4): 626–631. 2019.
  • Miyagawa I, Nakayamada S, Nakano K, et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatology. 2019;58(2):336–344.
  • Helliwell P, Gottlieb AB, Deodhar A, et al. The effect of guselkumab on enthesitis: results from a phase 2 study in patients with active psoriatic arthritis [abstract]. Arthritis Rheumatol. 2018;70(suppl 10). [cited 2019 Jun 20]. Available from: https://ard.bmj.com/content/annrheumdis/77/Suppl_2/1037.full.pdf
  • Baeten D, Østergaard M, Wei JC, et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis. 2018;77(9):1295–1302.
  • Cuthbert RJ, Watad A, Fragkakis EM, et al. Evidence that tissue resident human enthesis gammadeltaT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis. 2019;78(11):1559–1565.
  • Sieper J, Poddubnyy D, Miossec P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol. 2019;15(12):747–757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.