355
Views
3
CrossRef citations to date
0
Altmetric
Review

Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 929-944 | Received 01 Feb 2022, Accepted 27 Jun 2022, Published online: 11 Jul 2022

References

  • Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3(1):31.
  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017 May 16;474(11):1823–1836.
  • Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.
  • Mailhe M, Ricaboni D, Vitton V, et al. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol. 2018 Oct 24;18(1):157.
  • Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr. 2015 Feb;174(2):151–167.
  • Kaiko GE, Stappenbeck TS. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol. 2014 Nov;35(11):538–548.
  • Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.
  • Hooks KB, and O’Malley MA. Dysbiosis and its discontents. mBio. 2017 Oct 10;8(5). DOI:10.1128/mBio.01492-17.
  • Littmann ER, Lee -J-J, Denny JE, et al. Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun. 2021;12(1):755.
  • Lawson PA, Citron DM, Tyrrell KL, et al. Reclassification of clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe. 2016 Aug;40:95–99.
  • Oren A, Rupnik M. Clostridium difficile and Clostridioides difficile: two validly published and correct names. Anaerobe. 2018;52:125–126.
  • Davies KA, Longshaw CM, Davis GL, et al. Underdiagnosis of clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis. 2014;14(12):1208–1219.
  • Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol. 2021 Jan;18(1):67–80.
  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609–620.
  • Kochan TJ, Foley MH, Shoshiev MS, et al. Updates to Clostridium difficile Spore Germination. J Bacteriol. 2018;200(16):e00218.
  • Kochan TJ, Somers MJ, Kaiser AM, et al. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog. 2017;13(7):e1006443.
  • Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol. 2010;192(19):4983–4990.
  • Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–498.
  • Johnson S, Lavergne V, and Skinner AM, et al. Clinical practice guideline by the Infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults. Clinl Infect Dis. 73(5): e1029–e1044. 2021.
  • van Prehn J, Reigadas E, Vogelzang EH, et al. European society of clinical microbiology and infectious diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin Microbiol Infect. 2021;27:S1–S21.
  • Gupta A, Ananthakrishnan AN. Economic burden and cost-effectiveness of therapies for Clostridiodes difficile infection: a narrative review. Therap Adv Gastroenterol. 2021;14:17562848211018654.
  • Barbut F, Bouée S, Longepierre L, et al. Excess mortality between 2007 and 2014 among patients with Clostridium difficile infection: a French health insurance database analysis. J Hosp Infect. 2018;98(1):21–28.
  • Cornely OA. Current and emerging management options for Clostridium difficile infection: what is the role of fidaxomicin? Clin Microbiol Infect. 2012;18:28–35.
  • Kelly CP. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin Microbiol Infect. 2012;18:21–27.
  • Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments. Bmj. 2019 Aug 20;366:l4609.
  • Johnson TM, Molina KC, and Howard AH, et al. Real-world comparison of bezlotoxumab to standard of care therapy for prevention of recurrent Clostridioides difficile infection in patients at high risk for recurrence. Clin Infect Dis. 2022;74(9):1572–1579 .
  • Cammarota G, Ianiro G, Bibbo S, et al. Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg Med. 2014 Jun;9(4):365–373.
  • Huebner ES, Surawicz CM. Treatment of recurrent clostridium difficile diarrhea. Gastroenterol Hepatol. 2006;2(3):203–208.
  • Gupta A, Saha S, Khanna S. Therapies to modulate gut microbiota: past, present and future. World J Gastroenterol. 2020 Feb 28;26(8):777–788.
  • Eiseman B, Silen W, Bascom GS, et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958 Nov;44(5):854–859.
  • Vigvari S, Sipos D, Solt J, et al. Faecal microbiota transplantation for Clostridium difficile infection using a lyophilized inoculum from non-related donors: a case series involving 19 patients. Acta Microbiol Immunol Hung. 2019 Mar 1;66(1):69–78.
  • Youngster I, Sauk J, Pindar C, et al. Fecal microbiota transplant for relapsing clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clinl Infect Dis. 2014;58(11):1515–1522.
  • Hui W, Li T, Liu W, et al., Fecal microbiota transplantation for treatment of recurrent C. difficile infection: an updated randomized controlled trial meta-analysis. PloS one. 14(1): e0210016–e0210016. 2019.
  • Quraishi MN, Widlak M, Bhala N, et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther. 2017 Sep;46(5):479–493.
  • Juul FE, Garborg K, Bretthauer M, et al. Fecal microbiota transplantation for primary Clostridium difficile infection. N Engl J Med. 2018 Jun 28;378(26):2535–2536.
  • Xu D, Chen VL, Steiner CA, et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2019;114(7):1043–1050.
  • Ianiro G, Bibbo S, Scaldaferri F, et al. Fecal microbiota transplantation in inflammatory bowel disease: beyond the excitement. Medicine (Baltimore). 2014 Oct;93(19):e97.
  • Bonetto S, Fagoonee S, Battaglia E, et al. Recent advances in the treatment of irritable bowel syndrome. Pol Arch Intern Med. 2021 Aug 30;131(7–8):709–715.
  • Stojek M, Jabłońska A, Adrych K. The role of fecal microbiota transplantation in the treatment of inflammatory bowel disease. J Clin Med. 2021 Sep 8;10(18):4055.
  • Narula N, Kassam Z, Yuan Y, et al. Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm Bowel Dis. 2017;23(10):1702–1709.
  • Aron-Wisnewsky J, Clément K, Nieuwdorp M. Fecal microbiota transplantation: a future therapeutic option for obesity/diabetes? Curr Diab Rep. 2019;19(8):51.
  • Kang D-W, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1):10.
  • Hsu W-H, Wang J-Y, Kuo C-H. Current applications of fecal microbiota transplantation in intestinal disorders. Kaohsiung J Med Sci. 2019;35(6):327–331.
  • Antushevich H. Fecal microbiota transplantation in disease therapy. Clin Chim Acta. 2020;503:90–98.
  • Wortelboer K, Nieuwdorp M, Herrema H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine. 2019;44:716–729.
  • Bhutiani N, Schucht JE, Miller KR, et al. Technical aspects of Fecal microbial transplantation (FMT). Curr Gastroenterol Rep. 2018 Jun 9;20(7):30.
  • Khan MY, Dirweesh A, Khurshid T, et al. Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2018;30(11):1309–1317.
  • Cammarota G, Masucci L, Ianiro G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015;41(9):835–843.
  • Hota SS, Sales V, Tomlinson G, et al. Oral vancomycin followed by fecal transplantation versus tapering oral vancomycin treatment for recurrent clostridium difficile infection: an open-label, randomized controlled trial. Clin Infect Dis. 2017 Feb 1;64(3):265–271.
  • Baunwall SMD, Lee MM, Eriksen MK, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine. 2020 Dec;29-30:100642.
  • Galpérine T, Sokol H, Guery B. Fecal microbiota transplantation: do we need harmonization? Clinl Infect Dis. 2017;64(9):1292.
  • Dailey FE, Turse EP, Daglilar E, et al. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol. 2019;49:29–33.
  • Kao D, Roach B, Silva M, et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: a randomized clinical trial. Jama. 2017 Nov 28;318(20):1985–1993.
  • Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med. 2016 Nov 1;165(9):609–616.
  • Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. Jama. 2016 Jan 12;315(2):142–149.
  • Marcella C, Cui B, Kelly CR, et al. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther. 2021 Jan;53(1):33–42.
  • Kazemian N, Kao D, Pakpour S. Fecal microbiota transplantation during and post-COVID-19 pandemic. Int J Mol Sci. 2021;22(6):3004.
  • Terveer EM, Vendrik KEW, Ooijevaar RE, et al. Faecal microbiota transplantation for Clostridioides difficile infection: four years’ experience of the Netherlands donor feces bank. United European Gastroenterol J. 2020;8(10):1236–1247.
  • Kassam Z, Dubois N, Ramakrishna B, et al. Donor screening for fecal microbiota transplantation. N Engl J Med. 2019 Nov 21;381(21):2070–2072.
  • Tariq R, Weatherly R, Kammer P, et al. Donor screening experience for fecal microbiota transplantation in patients with recurrent C. difficile infection. J Clin Gastroenterol. 2018 Feb;52(2):146–150.
  • Woodworth MH, Carpentieri C, Sitchenko KL, et al. Challenges in fecal donor selection and screening for fecal microbiota transplantation: a review. Gut Microbes. 2017 May 4;8(3):225–237.
  • Nicco C, Paule A, Konturek P, et al. From donor to patient: collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases. 2020;8(2):9.
  • Ott SJ, Musfeldt M, Timmis KN, et al. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagn Microbiol Infect Dis. 2004;50(4):237–245.
  • Allegretti JR, Elliott RJ, Ladha A, et al. Stool processing speed and storage duration do not impact the clinical effectiveness of fecal microbiota transplantation. Gut Microbes. 2020;11(6):1806–1808.
  • Cammarota G, Ianiro G, Tilg H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017 Apr;66(4):569–580.
  • Lohsiriwat V. Colonoscopic perforation: incidence, risk factors, management and outcome. World J Gastroenterol. 2010 Jan 28;16(4):425–430.
  • Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011 Nov;53(10):994–1002.
  • Bakken JS, Borody T, Brandt LJ, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol. 2011 Dec;9(12):1044–1049.
  • Cui B, Li P, Xu L, et al. Step-up fecal microbiota transplantation (FMT) strategy. Gut Microbes. 2016 Jul 3;7(4):323–328.
  • Li P, Zhang T, Xiao Y, et al. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn’s disease. Appl Microbiol Biotechnol. 2019 Jan;103(1):349–360.
  • Shimizu H, Arai K, Asahara T, et al. Stool preparation under anaerobic conditions contributes to retention of obligate anaerobes: potential improvement for fecal microbiota transplantation. BMC Microbiol. 2021 Oct 9;21(1):275.
  • Hirotaka S, Katsuhiro A, Ichiro T, et al. Anaerobic stool preparation method for fecal microbiota transplantation is not superior to conventional aerobic method in preserving anaerobic bacteria. Am J Gastroenterol. 2018;113:125
  • Mendolia G, Kassam Z, McClure EL, et al. Mo1954 anaerobic fecal microbiota transplantation preparations are not necessary for treatment successful engraftment microbial in recurrent C.difficile infection. Gastroenterology. 2020;158(6):S-991-S–992.
  • Brunse A, Deng L, Pan X, et al. Fecal filtrate transplantation protects against necrotizing enterocolitis. ISME J. 2021 Sep 22;16(3):686–694.
  • Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology. 2017 Mar;152(4):799–811 e7.
  • Zhang T, Lu G, Zhao Z, et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell. 2020 Apr;11(4):251–266.
  • Liao CH, Shollenberger LM. Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Lett Appl Microbiol. 2003;37(1):45–50.
  • Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 2019;68(12):2111.
  • Jiang ZD, Alexander A, Ke S, et al. Stability and efficacy of frozen and lyophilized fecal microbiota transplant (FMT) product in a mouse model of Clostridium difficile infection (CDI). Anaerobe. 2017 Dec;48:110–114.
  • Hamilton MJ, Weingarden AR, Sadowsky MJ, et al. Standardized frozen preparation for transplantation of fecal microbiota for recurrentClostridium difficileInfection. Am J Gastroenterol. 2012;107(5):761–767.
  • Youngster I, Russell GH, Pindar C, et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014 Nov 5;312(17):1772–1778.
  • Hirsch BE, Saraiya N, Poeth K, et al. Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infect Dis. 2015 Apr 17;15(1):191.
  • Staley C, Hamilton MJ, Vaughn BP, et al. Successful resolution of recurrent clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; Pragmatic Cohort Study. Am J Gastroenterol. 2017 Jun;112(6):940–947.
  • Hecker MT, Obrenovich ME, Cadnum JL, et al. Fecal microbiota transplantation by freeze-dried oral capsules for recurrent clostridium difficile infection. Open Forum Infect Dis. 2016;3(2). DOI:10.1093/ofid/ofw091.
  • Jiang Z-D, Jenq RR, Ajami NJ, et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: a randomized clinical trial. PLOS ONE. 2018;13(11):e0205064.
  • Reigadas E, Olmedo M, Valerio M, et al. Fecal microbiota transplantation for recurrent Clostridium difficile infection: experience, protocol, and results. Rev Esp Quimioter. 2018 Oct;31(5):411–418.
  • Ramai D, Zakhia K, Fields PJ, et al. Fecal microbiota transplantation (FMT) with colonoscopy is superior to enema and nasogastric tube while comparable to capsule for the treatment of recurrent clostridioides difficile infection: a systematic review and meta-analysis. Dig Dis Sci. 2021;66(2):369–380.
  • Baheti A, Lokesh K, Bansal A. Excipients used in lyophilization of small molecules. J Excipients Food Chem. 2010;1(1):1135.
  • Kapel N, Waligora-Dupriet A-J, Thomas M, et al., inventors; Institut National de la Recherche Agronomique, Fr.; Universite Paris Descartes; Universite Paris Diderot - Paris 7; Assistance Publique - Hopitaux de Paris assignee. Lyophilized composition for preserving microbiome in its ecosystem patent WO2017103225A1. 2017.
  • Reigadas E, Bouza E, Olmedo M, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: experience with lyophilized oral capsules. J Hosp Infect. 2019;105(2):319–324.
  • Youngster I, Gerding DN. Editorial: making fecal microbiota transplantation easier to swallow: freeze-dried preparation for recurrent clostridium difficile infections. Am J Gastroenterol. 2017 Jun;112(6):948–950.
  • Jiang ZD, Ajami NJ, Petrosino JF, et al. Randomised clinical trial: faecal microbiota transplantation for recurrent Clostridum difficile infection - fresh, or frozen, or lyophilised microbiota from a small pool of healthy donors delivered by colonoscopy. Aliment Pharmacol Ther. 2017 Apr;45(7):899–908.
  • Fuller R. Probiotics in human medicine. Gut. 1991;32(4):439–442.
  • Marino M, Innocente N, Calligaris S, et al. Viability of probiotic Lactobacillus rhamnosus in structured emulsions containing saturated monoglycerides. J Funct Foods. 2017;35:51–59.
  • De Prisco A, Mauriello G. Probiotication of foods: a focus on microencapsulation tool. Trends Food SciTechnol. 2016;48:27–39.
  • Chien T, Doshi A, Danino T. Advances in bacterial cancer therapies using synthetic biology. Curr Opin Syst Biol. 2017;5:1–8.
  • Swofford CA, Van Dessel N, Forbes NS. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Nat Acad Sci. 2015;112(11):3457.
  • Shen N, Clemente J. Engineering the microbiome: a novel approach to immunotherapy for allergic and immune diseases. Curr Allergy Asthma Rep. 2015;15(7):538.
  • Nasri H, Baradaran A, Shirzad H, et al. New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med. 2014;5(12):1487–1499.
  • Calligaris S, Marino M, Maifreni M, et al. Potential application of monoglyceride structured emulsions as delivery systems of probiotic bacteria in reduced saturated fat ice cream. LWT. 2018;96:329–334.
  • Zhang F, Li XY, Park HJ, et al. Effect of microencapsulation methods on the survival of freeze-dried Bifidobacterium bifidum. J Microencapsul. 2013;30(6):511–518.
  • Shahidi F, Han XQ. Encapsulation of food ingredients. Crit Rev Food Sci Nutr. 1993;33(6):501–547.
  • Li S, Jiang W, Zheng C, et al. Oral delivery of bacteria: basic principles and biomedical applications. J Control Release. 2020 Sep 12;327:801–833.
  • Muthukumarasamy P, Holley RA. Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol. 2006;111(2):164–169.
  • Bosnea LA, Moschakis T, Biliaderis CG. Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. Food Bioprocess Technol. 2014;7(10):2767–2781.
  • Eratte D, Dowling K, Barrow CJ, et al. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: a review. Trends Food SciTechnol. 2018;71:121–131.
  • Zhao M, Wang Y, Huang X, et al. Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. Food Funct. 2018;9(2):1000–1008. DOI:10.1039/C7FO01802A.
  • Arslan-Tontul S, Erbas M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Sc Technol. 2017;81:160–169.
  • Champagne CP, Raymond Y, Tompkins TA. The determination of viable counts in probiotic cultures microencapsulated by spray-coating. Food Microbiol. 2010;27(8):1104–1111.
  • Coghetto CC, Brinques GB, Siqueira NM, et al. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J Funct Foods. 2016;24:316–326.
  • Pedroso D, Thomazini M, Heinemann RJB, et al. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J. 2012;26(2):127–132.
  • Pedroso DL, Dogenski M, Thomazini M, et al. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Braz J Microbiol. 2014;44(3):777–783.
  • Silva MP, Tulini FL, Marinho JFU, et al. Semisweet chocolate as a vehicle for the probiotics Lactobacillus acidophilus LA3 and Bifidobacterium animalis subsp. lactis BLC1: evaluation of chocolate stability and probiotic survival under in vitro simulated gastrointestinal conditions. LWT. 2017;75:640–647.
  • Quintana G, Gerbino E, Gómez-Zavaglia A. Valorization of okara oil for the encapsulation of Lactobacillus plantarum. Food Res Int. 2018;106:81–89.
  • Chowdhuri S, Cole CM, Devaraj NK. Encapsulation of living cells within giant phospholipid liposomes formed by the inverse-emulsion technique. ChemBioChem. 2016;17(10):886–889.
  • Cao Z, Cheng S, Wang X, et al. Camouflaging bacteria by wrapping with cell membranes. Nat Commun. 2019;10(1):3452.
  • Morris ER, Rees DA, Thom D, et al. Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydr Res. 1978;66(1):145–154.
  • Li L, Fang Y, Vreeker R, et al. Reexamining the egg-box model in calcium−alginate gels with X-ray diffraction. Biomacromolecules. 2007;8(2):464–468.
  • Etchepare M, Barin JS, Cichoski AJ, et al. Microencapsulation of probiotics using sodium alginate. Ciência Rural. 2015;45(7):1319–1326.
  • Sheu TY, Marshall RT. Microentrapment of lactobacilli in calcium alginate gels. J Food Sci. 1993;58(3):557–561.
  • Hansen LT, Allan-Wojtas PM, Jin YL, et al. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002;19(1):35–45.
  • Sultana K, Godward G, Reynolds N, et al. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 2000;62(1):47–55.
  • Callewaert M, Laurent-Maquin D, Edwards-Lévy F. Albumin–alginate-coated microspheres: resistance to steam sterilization and to lyophilization. Int J Pharm. 2007;344(1):161–164.
  • Anselmo AC, McHugh KJ, Webster J, et al. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv Mater. 2016;28(43):9486–9490.
  • Ansari F, Pourjafar H, Jodat V, et al. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express. 2017;7(1):144.
  • Krasaekoopt W, Bhandari B, Deeth HC. Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT - Food Sc Technol. 2006;39(2):177–183.
  • Bosnea LA, Moschakis T, Biliaderis CG. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food Funct. 2017;8(2):554–562. DOI:10.1039/C6FO01019A.
  • Eratte D, McKnight S, Gengenbach TR, et al. Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J Funct Foods. 2015;19:882–892.
  • da Silva TM, de Deus C, de Souza Fonseca B, et al. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Res Int. 2019;125:108577.
  • Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99(2):575–586.
  • Ledet GA, Graves RA, Bostanian LA, et al. Spray-drying of biopharmaceuticals. In: Varshney D, Singh M editors. Lyophilized biologics and vaccines: modality-based approaches. New York: Springer New York; 2015. p. 273–297.
  • Volkert M, Ananta E, Luscher C, et al. Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. J Food Eng. 2008;87(4):532–540.
  • Okuro PK, Thomazini M, Balieiro JCC, et al. Co- encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int. 2013;53(1):96–103.
  • Gómez-Mascaraque LG, López-Rubio A. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J Colloid Interface Sci. 2016;465:259–270.
  • Khoruts A, Hoffmann DE, Palumbo FB. The impact of regulatory policies on the future of fecal microbiota transplantation. J Law Med Ethics. 2019 Dec;47(4):482–504.
  • Ahluwalia B, Iribarren C, Magnusson MK, et al. A distinct faecal microbiota and metabolite profile linked to bowel habits in patients with irritable bowel syndrome. Cells. 2021 Jun 10;10(6):1459.
  • Paramsothy S, Nielsen S, Kamm MA, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology. 2019 Apr;156(5):1440–1454.e2.
  • Seekatz AM, Theriot CM, Rao K, et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018 Oct;53:64–73.
  • Brown JR, Flemer B, Joyce SA, et al. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterol. 2018 Aug 28;18(1):131.
  • Chu ND, Smith MB, Perrotta AR, et al. Profiling living bacteria informs preparation of fecal microbiota transplantations. PLoS One. 2017;12(1):e0170922.
  • Ishikawa D, Sasaki T, Osada T, et al. Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for ulcerative colitis. Inflamm Bowel Dis. 2017 Jan;23(1):116–125.
  • Seekatz AM, Aas J, Gessert CE, et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio. 2014 Jun 17;5(3):e00893–14.
  • Staley C, Kelly CR, Brandt LJ, et al. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. mBio. 2016 Dec 20;7(6). DOI:10.1128/mBio.01965-16.
  • Staley C, Vaughn BP, Graiziger CT, et al. Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota. Gut Microbes. 2017 May 4;8(3):276–288.
  • Bircher L, Geirnaert A, Hammes F, et al. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb Biotechnol. 2018;11(4):721–733.
  • Blount KF, Shannon WD, Deych E, et al. Restoration of bacterial microbiome composition and diversity among treatment responders in a phase 2 trial of RBX2660: an investigational microbiome restoration therapeutic. Open Forum Infect Dis. 2019;6(4). DOI:10.1093/ofid/ofz095.
  • Dubberke ER, Mullane KM, Gerding DN, et al. Clearance of vancomycin-resistant enterococcus concomitant with administration of a microbiota-based drug targeted at recurrent Clostridium difficile infection. Open Forum Infect Dis. 2016;3(3). DOI:10.1093/ofid/ofw133.
  • Orenstein R, Dubberke E, Hardi R, et al. Safety and durability of RBX2660 (Microbiota Suspension) for recurrent Clostridium difficile infection: results of the PUNCH CD Study. Clin Infect Dis. 2016 Mar 1;62(5):596–602.
  • Feuerstadt P, Louie TJ, Lashner B, et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N Engl J Med. 2022 Jan 20;386(3):220–229.
  • Marotz C, Cavagnero KJ, Song SJ, et al. Evaluation of the effect of storage methods on fecal. Saliva Skin Microbiome Composit mSystems. 2021 Apr 27;6(2):e01329–20.
  • Reygner J, Charrueau C, Delannoy J, et al. Freeze-dried fecal samples are biologically active after long-lasting storage and suited to fecal microbiota transplantation in a preclinical murine model of Clostridioides difficile infection. Gut Microbes. 2020 Sep 2;11(5):1405–1422.
  • Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent clostridium difficile infection. J Infect Dis. 2016;214(2):173–181.
  • Merrick B, Allen L, Masirah M, et al. Regulation, risk and safety of faecal microbiota transplant. Infect Prev Pract. 2020;2(3):100069.
  • Keller JJ, Vehreschild MJ, Hvas CL, et al. Stool for fecal microbiota transplantation should be classified as a transplant product and not as a drug. United European Gastroenterol J. 2019;7(10):1408–1410.
  • Cammarota G, Ianiro G, Ahern A, et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Clin Pract Gastroenterol Hepatol. 2020;17(10):635–648.
  • Xiao Y, Angulo MT, Lao S, et al. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat Commun. 2020 Jul 3;11(1):3329.
  • Auchtung JM, Preisner EC, Collins J, et al. Identification of simplified microbial communities that inhibit Clostridioides difficile infection through dilution/extinction. mSphere. 2020 Jul 29;5(4). DOI:10.1128/mSphere.00387-20.
  • Papanicolas LE, Choo JM, Wang Y, et al. Bacterial viability in faecal transplants: which bacteria survive? EBioMedicine. 2019 Mar;41:509–516.
  • Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing clostridium difficile diarrhoea in six patients. Lancet. 1989;333(8648):1156–1160.
  • Rode AA, Chehri M, Krogsgaard LR, et al. Randomised clinical trial: a 12-strain bacterial mixture versus faecal microbiota transplantation versus vancomycin for recurrent Clostridioides difficile infections. Aliment Pharmacol Ther. 2021;53(9):999–1009.
  • Tvede M, Tinggaard M, Helms M. Rectal bacteriotherapy for recurrent Clostridium difficile-associated diarrhoea: results from a case series of 55 patients in Denmark 2000–2012. Clin Microbiol Infect. 2015;21(1):48–53.
  • Davar D, Dzutsev Amiran K, McCulloch John A, et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602.
  • Baruch Erez N, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.