634
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in biological and targeted therapies for systemic sclerosis

, , , & ORCID Icon
Pages 325-339 | Received 26 Jan 2023, Accepted 23 Mar 2023, Published online: 26 Apr 2023

References

  • Rubio-Rivas M, Royo C, Simeon CP, et al. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin Arthritis Rheum. 2014 Oct;44(2):208–219.
  • Ingegnoli F, Ughi N, Mihai C. Update on the epidemiology, risk factors, and disease outcomes of systemic sclerosis. Best Pract Res Clin Rheumatol. 2018 Apr;32(2):223–240.
  • van den Hoogen F, Khanna D, Fransen J, et al. Classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum. 2013 Nov;65(11):2737–2747.
  • Tsou PS, Varga J, O’reilly S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol. 2021 Oct;17(10):596–607.
  • Zanin-Silva DC, Santana-Goncalves M, Kawashima-Vasconcelos MY, et al. Management of endothelial dysfunction in systemic sclerosis: current and developing strategies. Front Med. 2021;8:788250.
  • Gasparini G, Cozzani E, Parodi A. Interleukin-4 and interleukin-13 as possible therapeutic targets in systemic sclerosis. Cytokine. 2020 Jan;125:154799.
  • Liu M, Wu W, Sun X, et al. New insights into CD4(+) T cell abnormalities in systemic sclerosis. Cytokine Growth Factor Rev. 2016 Apr;28:31–36.
  • Roumm AD, Whiteside TL, Medsger TA Jr., et al. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984 Jun;27(6):645–653.
  • Furue M, Mitoma C, Mitoma H, et al. Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunol Res. 2017 Aug;65(4):790–797.
  • Maehara T, Kaneko N, Perugino CA, et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest. 2020 May 1;130(5):2451–2464.
  • Allanore Y, Simms R, Distler O, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015 Apr 23;1:15002.
  • Lescoat A, Lecureur V, Varga J. Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: recent insights and therapeutic implications. Curr Opin Rheumatol. 2021 Nov 1;33(6):463–470.
  • Sakkas LI, Bogdanos DP. Systemic sclerosis: new evidence re-enforces the role of B cells. Autoimmun Rev. 2016 Feb;15(2):155–161.
  • Matsushita T, Hasegawa M, Yanaba K, et al. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006 Jan;54(1):192–201.
  • Chakravarty EF, Martyanov V, Fiorentino D, et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res Ther. 2015 Jun 13;17(1):159.
  • Khanna D, Lin CJF, Furst DE, et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2020 Oct;8(10):963–974.
  • Khanna D, Denton CP, Jahreis A, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSscinate): a phase 2, randomised, controlled trial. Lancet. 2016 Jun 25;387(10038):2630–2640.
  • Roofeh D, Lin CJF, Goldin J, et al. Tocilizumab prevents progression of early systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 2021 Jul;73(7):1301–1310. 10.1002/art.41668.
  • Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015 Jul 1;125(7):2795–2807.
  • Fukasawa T, Yoshizaki A, Kageybayashi H, et al. POS0857 Pharmacokinetics, safety, and efficicay of subcutaneous brodalumab for systemic sclerosis with moderate-to-severe skin thickening: a single-arm, open-label, multi-dose, phase 1 trial. Ann Rheum Dis. 2022;81:722–723.
  • Fukasawa T, Yoshizaki A, Kageybayashi H. POS0881 Efficacy and safety of subcutaneous brodalumab, a fully human anti-IL-17RA monoclonal antibody, for systemic sclerosis with moderate-to-severe skint hickening: a multcicenter, randomized, placebo-controlled, double-blind phase 3 study. Ann Rheum Dis. 2022;81:736.
  • Khanna D, Denton C, Furst D. A 24-Week, Phase IIa, Randomized, Double-blind, Placebo-controlled Study of Ziritaxestat in Early Diffuse Cutaneous Systemic Sclerosis (NOVESA). Arthritis Rheumatol. 2023. In Press. doi:10.1002/art.42477
  • Khanna D, Lin CJF, Furst DE, et al. Long-term safety and efficacy of tocilizumab in early systemic sclerosis-interstitial lung disease: open-label extension of a phase 3 randomized controlled trial. Am J Respir Crit Care Med. 2022 Mar 15;205(6):674–684. doi:10.1164/rccm.202103-0714OC.
  • Ebata S, Yoshizaki A, Koji O, et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blien, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 2021;3(7):E489–97. DOI:10.1016/S2665-9913(21)00107-7
  • Sircar G, Goswami RP, Sircar D, et al. Intravenous cyclophosphamide vs rituximab for the treatment of early diffuse scleroderma lung disease: open label, randomized, controlled trial. Rheumatology (Oxford). 2018 Dec 1;57(12):2106–2113.
  • Maher TM, Tudor VA, Saunders P, et al. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, double-dummy, randomised, controlled, phase 2b trial. Lancet Respir Med. 2022 Nov11;11(1):45–54.
  • Zamanian RT, Badesch D, Chung L, et al. Safety and efficacy of b-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension: a multicenter, double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2021 Jul 15;204(2):209–221.
  • Gordon JK, Martyanov V, Franks JM, et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol. 2018 Feb;70(2):308–316.
  • Schiopu E, Chatterjee S, Hsu V, et al. Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res Ther. 2016 Jun 7;18(1):131.
  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov.
  • Lafyatis R, Spiera R, Domsic R, et al. Safety, target engagement, and initial efficacy of AVID200, a first-in-class potent and isoform-selective inhibitor of TGF-Beta 1 and 3, in patients with diffuse cutaneous systemic sclerosis (dcSsc): a phase 1 dose escalation study. Ann Rheum Dis. 2020;79:394–395.
  • Black CM, Silman AJ, Herrick AI, et al. Interferon-alpha does not improve outcome at one year in patients with diffuse cutaneous scleroderma: results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 1999 Feb;42(2):299–305.
  • Chizzolini C, Boin F. The role of the acquired immune response in systemic sclerosis. Semin Immunopathol. 2015 Sep;37(5):519–528.
  • Milano A, Pendergrass SA, Sargent JL, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE. 2008 Jul 16;3(7):e2696.
  • Hinchcliff M, Huang CC, Wood TA, et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol. 2013 Aug;133(8):1979–1989.
  • Khanna D, Spino C, Johnson S, et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 2020 Jan;72(1):125–136.
  • Chung L, Spino C, McLain R, et al. Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatol. 2020 Dec;2(12):e743–53.
  • Mehta BK, Espinoza ME, Franks JM, et al. Machine-learning classification identifies early systemic sclerosis patients that improve with abatacept treatment by modulating CD28-pathways. JCI Insight. 2022 Nov 10;7. DOI:10.1172/jci.insight.155282
  • Domsic RT, Medsger TA, Gao S, et al. A data-driven approach finds RNA polymerase III antibody and tendon friction rubs as enrichment tools for early diffuse scleroderma trials. Rheumatology (Oxford). 2022 Aug 29. DOI:10.1093/rheumatology/keac501.
  • Raja J, Denton CP. Cytokines in the immunopathology of systemic sclerosis. Semin Immunopathol. 2015 Sep;37(5):543–557.
  • O’reilly S, Cant R, Ciechomska M, et al. Interleukin-6: a new therapeutic target in systemic sclerosis? Clin Transl Immunology. 2013 Apr;2(4):e4.
  • Needleman BW. Immunologic aspects of scleroderma. Curr Opin Rheumatol. 1992 Dec;4(6):862–868.
  • Saito F, Tasaka S, Inoue K, et al. Role of interleukin-6 in bleomycin-induced lung inflammatory changes in mice. Am J Respir Cell Mol Biol. 2008 May;38(5):566–571.
  • Khanna D, Denton CP, Lin CJF, et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSscinate). Ann Rheum Dis. 2018 Feb;77(2):212–220.
  • O’reilly S. Role of interleukin-13 in fibrosis, particularly systemic sclerosis. BioFactors. 2013 Nov;39(6):593–596.
  • McGaha T, Saito S, Phelps RG, et al. Lack of skin fibrosis in tight skin (TSK) mice with targeted mutation in the interleukin-4R alpha and transforming growth factor-beta genes. J Invest Dermatol. 2001 Jan;116(1):136–143.
  • Raghu G, Richeldi L, Crestani B, et al. SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebo-controlled study (DRI11772). Eur Respir J. 2018 Dec;52(6):1801130.
  • Allanore Y, Wung P, Soubrane C, et al. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2020 Dec;79(12):1600–1607.
  • Roberts AB, Sporn MB. Transforming growth factors. Cancer Surv. 1985;4(4):683–705.
  • Roberts AB, Flanders KC, Heine UI, et al. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B Biol Sci. 1990 Mar 12;327(1239):145–154.
  • Derynck R, Budi EH. Specificity, versatility, and control of TGF-beta family signaling. Sci Signal. 2019 Feb 26;12(570). doi:10.1126/scisignal.aav5183.
  • Sun T, Huang Z, Liang WC, et al. Tgfbeta2 and TGFbeta3 isoforms drive fibrotic disease pathogenesis. Sci Transl Med. 2021 Aug 4;13(605). doi :10.1126/scitranslmed.abe0407.
  • Barr T. A selective TGF-B1 and TGF-B3 trap demonstrates target engagement and anti-fibrotic efficacy in mouse and translational mdoels of systemic sclerosis-associated intersitial lung disease. 7th Systemic Sclerosis World Congress; 2022 March 10-12; Virtual; 2022.
  • Farina G, Lafyatis D, Lemaire R, et al. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2010 Feb;62(2):580–588.
  • Shi N, Wang Z, Zhu H, et al. Research progress on drugs targeting the TGF-beta signaling pathway in fibrotic diseases. Immunol Res. 2022 Jun;70(3):276–288.
  • Martin CJ, Datta A, Littlefield C, et al. Selective inhibition of TGFbeta1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med. 2020 Mar 25;12(536). doi :10.1126/scitranslmed.aay8456.
  • Rapoza ML, Fu D, Sendak RA. Development of an in vitro potency assay for therapeutic TGFbeta antagonists: the A549 cell bioassay. J Immunol Methods. 2006 Oct 20;316(1–2):18–26.
  • Nakashima T, Jinnin M, Yamane K, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol. 2012 Apr 15;188(8):3573–3583.
  • Corrado A, Rotondo C, Sanpaolo ER, et al. 1,25OH-Vitamin D3 and IL-17 inhibition modulate pro-fibrotic cytokines production in peripheral blood mononuclear cells of patients with systemic sclerosis. Int J Med Sci. 2022;19(5):867–877. DOI:10.7150/ijms.70984
  • Wu M, Assassi S. Dysregulation of type 1 interferon signaling in systemic sclerosis: a promising therapeutic target? Curr Treatm Opt Rheumatol. 2021 Dec;7(4):349–360.
  • Ototake Y, Yamaguchi Y, Asami M, et al. Downregulated IRF8 in monocytes and macrophages of patients with systemic sclerosis may aggravate the fibrotic phenotype. J Invest Dermatol. 2021 Aug;141(8):1954–1963.
  • Kakkar V, Assassi S, Allanore Y, et al. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol. 2022 Nov 1;34(6):357–364.
  • Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-alpha receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014 Feb 24;16(1):R57.
  • Guo X, Higgs BW, Bay-Jensen AC, et al. Suppression of T cell activation and collagen accumulation by an anti-ifnar1 mab, anifrolumab, in adult patients with systemic sclerosis. J Invest Dermatol. 2015 Oct;135(10):2402–2409.
  • Bohdziewicz A, Pawlik KK, Maciejewska M, et al. Future treatment options in systemic sclerosis—potential targets and ongoing clinical trials. J Clin Med. 2022 Feb 27;11(5):1310.
  • Segal Salto M, Mor A, Del Galdo F. CCL24 Serum concentration correlates with disease activity and worse prognosis in diffuse cutaneous SSc: a promising biological target to prevent disease progression. Ann Rheum Dis. 2022;81:499.
  • Mor A, Segal Salto M, Katav A, et al. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann Rheum Dis. 2019 Sep;78(9):1260–1268.
  • Ferdinand JR, Richard AC, Meylan F, et al. Cleavage of TL1A differentially regulates its effects on innate and adaptive immune cells. J Immunol. 2018 Feb 15;200(4):1360–1369.
  • Prehn JL, Thomas LS, Landers CJ, et al. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007 Apr 1;178(7):4033–4038.
  • Valatas V, Kolios G, Bamias G. TL1A (TNFSF15) and DR3 (TNFRSF25): a co-stimulatory system of cytokines with diverse functions in gut mucosal immunity. Front Immunol. 2019;10:583.
  • Jacob N, Kumagai K, Abraham JP, et al. Direct signaling of TL1A-DR3 on fibroblasts induces intestinal fibrosis in vivo. Sci Rep. 2020 Oct 23;10(1):18189.
  • Xu W, Su L, Qing P, et al. Elevated levels of TL1A are associated with disease activity in patients with systemic sclerosis. Clin Rheumatol. 2017 Jun;36(6):1317–1324.
  • Herro R, Miki H, Gs S, et al. TL1A promotes lung tissue fibrosis and airway remodeling. J Immunol. 2020 Nov 1;205(9):2414–2422.
  • Castelino FV, Bain G, Pace VA, et al. An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis Rheumatol. 2016 Dec;68(12):2964–2974.
  • Taneja A, Desrivot J, Diderichsen PM, et al. Population pharmacokinetic and pharmacodynamic analysis of GLPG1690, an autotaxin inhibitor, in healthy volunteers and patients with idiopathic pulmonary fibrosis. Clin Pharmacokinet. 2019 Sep;58(9):1175–1191.
  • Castelino FV, Seiders J, Bain G, et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 2011 May;63(5):1405–1415.
  • Allanore Y, Distler O, Jagerschmidt A, et al. Lysophosphatidic acid receptor 1 antagonist SAR100842 for patients with diffuse cutaneous systemic sclerosis: a double-blind, randomized, eight-week placebo-controlled study followed by a sixteen-week open-label extension study. Arthritis Rheumatol. 2018 Oct;70(10):1634–1643.
  • Wang W, Bhattacharyya S, Marangoni RG, et al. The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. J Scleroderma Relat Disord. 2020 Feb;5(1):40–50.
  • Hodge JA, Kawabata TT, Krishnaswami S, et al. The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016 Mar;34(2):318–328.
  • Migita K, Izumi Y, Torigoshi T, et al. Inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway in rheumatoid synovial fibroblasts using small molecule compounds. Clin Exp Immunol. 2013 Dec;174(3):356–363.
  • Khanna D, Padilla C, Tsoi LC, et al. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight. 2022 Sep 8;7(17). doi :10.1172/jci.insight.159566.
  • Moriana C, Moulinet T, Jaussaud R, et al. JAK inhibitors and systemic sclerosis: a systematic review of the literature. Autoimmun Rev. 2022 Oct;21(10):103168.
  • Actemra (tocilizumab) for intravenous or subcutaneous use [package insert]. South San Francisco CA: Genentech Inc.; 2021.
  • Lafyatis R, Kissin E, York M, et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2009 Feb;60(2):578–583.
  • Lafyatis R, O’hara C, Feghali-Bostwick CA, et al. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 2007 Sep;56(9):3167–3168.
  • Whitfield ML, Finlay DR, Murray JI, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12319–12324.
  • Elhai M, Boubaya M, Distler O, et al. Outcomes of patients with systemic sclerosis treated with rituximab in contemporary practice: a prospective cohort study. Ann Rheum Dis. 2019 Jul;78(7):979–987.
  • Streicher K, Sridhar S, Kuziora M, et al. Baseline plasma cell gene signature predicts improvement in systemic sclerosis skin scores following treatment with inebilizumab (MEDI-551) and correlates with disease activity in systemic lupus erythematosus and chronic obstructive pulmonary disease. Arthritis Rheumatol. 2018 Dec;70(12):2087–2095.
  • Dorner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11(5):247.
  • Bowman SJ, Fox R, Dorner T, et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjogren’s syndrome: a randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet. 2022 Jan 8;399(10320):161–171.
  • Kraaij T, Huizinga TW, Rabelink TJ, et al. Belimumab after rituximab as maintenance therapy in lupus nephritis. Rheumatology (Oxford). 2014 Nov;53(11):2122–2124.
  • Skaug B, Khanna D, Swindell WR, et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis. 2020 Mar;79(3):379–386.
  • Mahoney JM, Taroni J, Martyanov V, et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLoS Comput Biol. 2015 Jan;11(1):e1004005.
  • Taroni JN, Mahoney JM, Whitfield ML. The mechanistic implications of gene expression studies in SSc: insights from systems biology. Curr Treatm Opt Rheumatol. 2017 Sep;3(3):181–192.
  • Franks JM, Toledo DM, Martyanov V, et al. A genomic meta-analysis of clinical variables and their association with intrinsic molecular subsets in systemic sclerosis. Rheumatology (Oxford). 2022 Dec 23;62(1):19–28.
  • Yang M, Goh V, Lee J, et al. Clinical phenotypes of patients with systemic sclerosis with distinct molecular signatures in skin. Arthritis Care Res (Hoboken). 2022 Aug 23. DOI:10.1002/acr.24998.
  • Franks JM, Martyanov V, Wang Y, et al. Machine learning predicts stem cell transplant response in severe scleroderma. Ann Rheum Dis. 2020 Dec;79(12):1608–1615.
  • Shand L, Lunt M, Nihtyanova S, et al. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: application of a latent linear trajectory model. Arthritis Rheum. 2007 Jul;56(7):2422–2431.
  • Ramahi A, Lescoat A, Roofeh D, et al. Risk factors for lung function decline in systemic sclerosis-associated interstitial lung disease in a large single-center cohort. Rheumatology (Oxford). 2022 Nov 15. DOI:10.1093/rheumatology/keac639.
  • Isomura Y, Shirai Y, Kuwana M. Clinical worsening following discontinuation of tocilizumab in diffuse cutaneous systemic sclerosis: a single-centre experience in Japan. Rheumatology (Oxford). 2022 Nov 2;61(11):4491–4496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.