199
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging antibacterial and antiviral drugs for treating respiratory tract infections

, , ORCID Icon, &
Pages 185-199 | Received 19 Oct 2017, Accepted 20 Jul 2018, Published online: 30 Jul 2018

References

  • Wang H, Nathalie M, Allen C et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 Lancet. 2016 Oct 8; 388(10053): 1459–1544.
  • Spellberg B1, Bartlett JG, Gilbert DN. The future of antibiotics and resistance N Engl J Med. 2013 Jan 24; 368(4):299–302.
  • Bonten MJ, Kollef MH, Hall JB Risk factors for ventilator-associated pneumonia: from epidemiology to patient management. Clin Infect Dis. 2004;38:1141–1149.
  • Siempos II, Vardakas KZ, Kyriakopoulos CE, et al. Predictors of mortality in adult patients with ventilator-associated pneumonia: a meta-analysis. Shock. 2010; 33(6):590–601.
  • Aliberti S, Di Pasquale M, Zanaboni AM et al. Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin Infect Dis. 2012 Feb 15;54(4):470–478.
  • Aliberti S, Cilloniz C, Chalmers JD et al. Multidrug-resistant pathogens in hospitalised patients coming from the community with pneumonia: a European perspective. Thorax. 2013; 68(11):997–999.
  • Shorr AF, Zilberberg MD, Reichley R et al. Validation of a clinical score for assessing the risk of resistant pathogens in patients with pneumonia presenting to the emergency department. Clin Infect Dis. 2012; 54(2):193–198.
  • Di Pasquale M, Esperatti M, Crisafulli E et al. Impact of chronic liver disease in intensive care unit acquired pneumonia: a prospective study. Intensive Care Med. 2013 Oct;39(10):1776–1784.
  • Jhung MA, Swerdlow D, Olsen SJ et al. Epidemiology of 2009 pandemic influenza A (H1N1) in the United States. Clin Infect Dis. 2011 Jan 1;52 Suppl 1:S13–S26.
  • Socan M, Marinic-Fiser N, Kraigher A, et al. Microbial aetiology of community-acquired pneumonia in hospitalised patients. Eur J Clin Microbiol Infect Dis 1999; 18: 777–782].
  • Welte T, Torres A, Nathwani D Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012; 67: 71–79.
  • Yayan L The comparative development of elevated resistance to macrolides in community-acquired pneumonia caused by Streptococcus pneumoniae. Drug Des Devel Ther. 2014;8:1733–1743
  • Felmingham D1, Cantón R, Jenkins SG Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001-2004 J Infect. 2007;55(2):111–118
  • McGee L, McDougal L, Zhou J et al. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol. 2001;39(7):2565–2571.
  • Varon E, Mainardi JL, Gutmann L Streptococcus pneumoniae: still a major pathogen. Clin Microbiol Infect 2010; 16: 401.
  • Hauser C, Kronenberg A, Allemann A et al. Serotype/serogroup-specific antibiotic non-susceptibility of invasive and non-invasive Streptococcus pneumoniae, Switzerland, 2004 to 2014 Euro Surveill. 2016; 260(21);21
  • LeBlanc JJ, ElSherif M, Ye L et al. Serious Outcomes Surveillance (SOS) Network of the Canadian Immunization Research Network (CIRN). Burden of vaccine-preventable pneumococcal disease in hospitalized adults: a Canadian Immunization Research Network (CIRN) Serious Outcomes Surveillance (SOS) network study. Vaccine. 2017 35(29):3647–3654.
  • Rubinstein E, Kollef MH, Nathwani D Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis.2008; 46: 378–385.
  • De La Calle C, Morata L, Cobos-Trigueros N et al. Staphylococcus aureus bacteremic pneumonia. Eur J Clin Microbiol Infect Dis. 2016;35(3):497–502.
  • Aliberti S, Reyes LF, Faverio P et al. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis. 2016;16(12):1364–1376
  • Yayan J, Ghebremedhin B, Rasche K No outbreak of vancomycin and linezolid resistance in Staphylococcal pneumonia over a 10-year period. PLoS ONE 2015; 10(9): e0138895.doi: 10.1371.
  • Lee H-Y, Chen C-L, Liu S-Y et al. Impact of Molecular epidemiology and reduced susceptibility to glycopeptides and daptomycin on outcomes of patients with methicillin-resistant Staphylococcus aureus bacteremia. PLoS ONE 2015 10(8):e0136171.DOI:10.1371/journal.pone.0136171.
  • Walkey AJ, O’Donnell MR, Wiener RS Linezolid vs glycopeptide antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a meta-analysis of randomized controlled trials. Chest. 2011; 139: 1148–1155.
  • Wang Y, Zou Y, Xie J et al. Linezolid versus vancomycin for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a systematic review employing meta-analysis. Eur J Clin Pharmacol. 2015; 71: 107–115.
  • Lin MY, Lyles-Banks RD, Lolans K et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 2013;57:1246e52;
  • Jain A, Hopkins KL, Turton J et al. NDM carbapenemases in the United Kingdom: an analysis of the first 250 cases. J Antimicrob Chemother 2014;69:1777e84
  • Cosgrove SE, Kaye KS, Eliopoulos GM et al. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med. 2002;162:185–190.
  • Özvatan T, Akalın H, Sınırtaş M et al. Nosocomial Acinetobacter pneumonia: treatment and prognostic factors in 356 cases. Respirology 2016;21(2):363–369.
  • Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014; 74: 1315
  • Djahmi N, Dunyach-Remy C, Pantel A et al. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. BioMed Res. Int. 2014; 2014: 305784.
  • Kim UJ, Kim HK, An JH et al. Update on the epidemiology, treatment, and outcomes of carbapenem resistant Acinetobacter infections. Chonnam Med J 2014; 50: 37–44.
  • Falagas ME, Bliziotis IA, Siempos II Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case-control studies. Crit. Care 2006; 10(2):R48.
  • Ye JJ, Lin HS, Kuo AJ et al. The clinical implication and prognostic predictors of tigecycline treatment for pneumonia involving multidrug-resistant Acinetobacter baumannii. J. Infect. 2011; 63: 351–361.
  • Chastre J Ventilator associated pneumonia, Am J Respri Crit Care Med 2002; 165: 867–903
  • Sader HS, Farrell DJ, Flamm RK, et al. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents 2014;43:328–334.
  • Tam VH, Chang KT, Schilling AN et al. Impact of AmpC overexpression on outcomes of patients with Pseudomonas aeruginosa bacteremia. Diagn Microbiol Infect Dis 2009;63:279–285.
  • Bonomo RA, Szabo D Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43:49–56.
  • Joshua T, Thaden, Jason M et al. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae, Virulence 2017, 8:4, 403–416
  • Thaden JT, Fowler VG, Sexton DJ et al. Increasing incidence of extended-spectrum b-lactamase- producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol 2016; 37:49–54.
  • Falagas ME, Karageorgopoulos DE Extended-spectrum b-lactamase-producing organisms. J Hosp Infect 2009; 73:345–54].
  • Sievert DM, Ricks P, Edwards JR et al. National Healthcare Safety Network (NHSN) Team and participating NHSN facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34: 1–14.
  • Zilberberg MD, Shorr AF, Micek ST et al. Multidrug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18(6):596.
  • Gamblin SJ, Skehel JJ: Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 2010, 285:28403–28409.
  • WHO Review of global influenza activity, October 2015–October 2016weekly epidemiological record, nos. 51/52, 16 Dec 2016.
  • McElhaney J, Third European OA Influenza Summit: organized by the European Scientific Working Group on Influenza (ESWI). Vaccine. 2013;31(52):6161–6167.
  • Aoki FY, Macleod MD, Paggiaro P et al. Group IS: Early administration of oral oseltamivir increases the benefits of influenza treatment. J Antimicrob Chemother 2003, 51:123–129.
  • Jefferson T, Jones M, Doshi P et al. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments BMJ. 2014; 9;348:g2545. Doi:10.1136/bmj.g2545.
  • Dobson J, Whitley RJ, Pocock S et al. Oseltamivir treatment for influenza in adults: a meta-analysis of randomized controlled trials. Lancet 2015; 385: 1729–1737
  • Muthuri SG, Venkatesan S, Myles PR et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med. 2014;2(5):395–404.
  • Alves Galvão MG, Ma RCS, Ajl ADC. Amantadine and rimantadine for influenza A in children and the elderly. Cochrane Database Syst Rev. 2014;11:CD002745.
  • Nair H, Nokes DJ, Gessner BD et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis Lancet. 2010 May 1;375(9725):1545–1555.
  • Shi T, McAllister DA, O’Brien KL et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study Lancet. 2017;390(10098):946–958.
  • Abraha HY, Lanctot KL, Paes B, Risk of respiratory syncytial virus 334 infection in preterm infants: reviewing the need for prevention. Expert Rev Respir 335 Med, 2015. 9(6): p. 779–799.
  • Zhang S, Sammon PM, King I et al. Cost of management of severe pneumonia in young children: systematic analysis. J Glob Health 2016; 6: 010408
  • Chan PW, Abdel-Latif ME Cost of hospitalization for respiratory syncytial virus chest infection and implications for passive immunization strategies in a developing nation. Acta Paediatr 2003;92:481–485.
  • Robert JN, Graham BS, Karron RA et al., Challenges and opportunities in RSV vaccine development: 343 Meeting report from FDA/NIH workshop. Vaccine, 2016. 34(41): p. 4843–4849
  • Hynicka LM, Ensor CR, Prophylaxis and treatment of respiratory syncytial 349 virus in adult immunocompromised patients. Ann Pharmacother, 2012. 46(4): p. 350 558–66.
  • Arjona A. Nemonoxacin. Drugs of the Future 2009; 34: 196–203.
  • Adam HJ, Laing NM, King CR et al. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob Agents Chemother. 2009; 53(11):4915–4920. doi:10.1128/AAC.00078-09.
  • Chen YH, Liu CY, Lu JJ et al. In vitro activity of nemonoxacin (TG-873870), a novel non-fluorinated quinolone, against clinical isolates of Staphylococcus aureus, enterococci and Streptococcus pneumoniae with various resistance phenotypes in Taiwan. J Antimicrob Chemother. 2009;64(6):1226–1229.
  • Chung DT, Tsai CY, Chen SJ et al. Multiple-dose safety, tolerability, and pharmacokinetics of oral nemonoxacin (TG-873870) in healthy volunteers. Antimicrob Agents Chemother. 2010;54(1):411–417.
  • Roychoudhury S, Makin K, Twinem T et al. In vitro resistance development to nemonoxacin in Streptococcus pneumoniae: a unique profile for a novel nonfluorinated quinolone. Microb Drug Resist. 2016; 22(7):578–584.
  • Van Rensburg DJ, Perng RP, Mitha IH et al. Efficacy and safety of nemonoxacin versus levofloxacin for community-acquired pneumonia. Antimicrob Agents Chemother. 2010; 54(10):4098–4106.
  • Liu Y, Zhang Y, Wu J et al. A randomized, double-blind, multicenter Phase II study comparing the efficacy and safety of oral nemonoxacin with oral levofloxacin in the treatment of community-acquired pneumonia J Microbiol Immunol Infect. 2015; S1684–1182(15)00915–00919.
  • Available from: http://www.taigenbiotech.com
  • Poole RM Nemonoxacin: first global approval. Drugs. 2014; 74(12):1445–1453.
  • Rodgers W, Frazier AD, Champney WS Solithromycin inhibition of protein synthesis and ribosome biogenesis in Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae. Antimicrob Agents Chemother. 2013; 57(4):1632–1637.
  • Farrell DJ, Mendes RE, Jones RN Antimicrobial activity of solithromycin against serotyped macrolide-resistant Streptococcus pneumoniae isolates collected from U.S. medical centers in 2012. Antimicrob Agents Chemother. 2015; 59(4):2432–2434.
  • Farrell DJ, Sader HS, Castanheira M et al. Antimicrobial characterisation of CEM-101 activity against respiratory tract pathogens, including multidrug-resistant pneumococcal serogroup 19A isolates. Int J Antimicrob Agents. 2010; 35(6):537–543.
  • Putnam SD, Sader HS, Farrell DJ et al. Antimicrobial characterisation of solithromycin (CEM-101), a novel fluoroketolide: activity against staphylococci and enterococci. Int J Antimicrob Agents. 2011; 37(1):39–45.
  • McGhee P1, Clark C, Kosowska-Shick KM, et al., Appelbaum PC In vitro activity of CEM-101 against Streptococcus pneumoniae and Streptococcus pyogenes with defined macrolide resistance mechanisms. Antimicrob Agents Chemother. 2010 Jan;54(1):230–238.
  • Still JG, Schranz J, Degenhardt TP et al. Pharmacokinetics of solithromycin (CEM-101) after single or multiple oral doses and effects of food on single-dose bioavailability in healthy adult subjects. Antimicrob Agents Chemother. 2011; 55(5):1997–2003.
  • Oldach D, Clark K, Schranz J et al. Randomized, double-blind, multicenter phase 2 study comparing the efficacy and safety of oral solithromycin (CEM-101) to those of oral levofloxacin in the treatment of patients with community-acquired bacterial pneumonia. Antimicrob Agents Chemother. 2013; 57(6):2526–2534.
  • Rodvold KA, Gotfried MH, Still JG et al. Comparison of plasma, epithelial lining fluid, and alveolar macrophage concentrations of solithromycin (CEM-101) in healthy adult subjects. Antimicrob Agents Chemother. 2012; 56(10):5076–5081.
  • Jamieson BD, Ciric S, Fernandes P. Safety and pharmacokinetics of solithromycin in subjects with hepatic impairment. Antimicrob Agents Chemother. 2015 Aug;59(8):4379–4386.
  • Barrera CM, Mykietiuk A, Metev H et al. Efficacy and safety of oral solithromycin versus oral moxifloxacin for treatment of community-acquired bacterial pneumonia: a global, double-blind, multicentre, randomised, active-controlled, non-inferiority trial (SOLITAIRE-ORAL) Lancet Infect Dis 2016; 16: 421–430.
  • FDA Briefing document Solithromycin Oral Capsule and Injection Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC). Available from: https://www.fda.gov Nov, 4 2016.
  • El-Gamal MI, Brahim I, Hisham N, et al. Recent updates of carbapenem antibiotics. Chem. 2017 May 5;131:185–195
  • Kuroki H, Tateno N, Ikeda H, et al. Investigation of pneumonia-causing pathogenic organisms in children and the usefulness of tebipenem pivoxil for their treatment. J Infect Chemother. 2010;16:280–287
  • Sugihara K, Tateda K, Yamamura N, et al. Efficacy of human-simulated exposures of tomopenem (formerly CS-023) in a murine model of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother. 2011 Nov;55(11):5004–5009.
  • Draper MP, Weir S, Macone A et al. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob Agents Chemother. 2014;58(3):1279–1283.
  • Pfaller MA, Huband MD, Rhomberg PR et al. Surveillance of omadacycline activity against clinical isolates from a global collection (North America, Europe, Latin America, Asia-Western Pacific), 2010-2011. Antimicrob Agents Chemother. 2017 Apr 24;61(5): e00018–17.
  • Macone AB, Caruso BK, Leahy RG et al. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother. 2014;58(2):1127–1135.
  • Sun H, Ting L, Machineni S et al. Randomized, open-label study of the pharmacokinetics and safety of oral and intravenous administration of omadacycline to healthy subjects. Antimicrob Agents Chemother. 2016;60(12):7431–7435.
  • Tzanis E, Manley A, Villano S et al. Effect of food on the bioavailability of omadacycline in healthy participants. J Clin Pharmacol. 2017; 57(3):321–327.
  • Gotfried MH, Horn K, Garrity-Ryan L et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells in healthy adult subjects. Antimicrob Agents Chemother. 2017 10. pii: AAC.01135–17.
  • McCurdy SP, Jones RN, Mendes RE et al. In vitro activity of dalbavancin against drug-resistant Staphylococcus aureus isolates from a global surveillance program. Antimicrob Agents Chemother. 2015; 59(8):5007–5009.
  • Leighton A, Gottlieb AB, Dorr MB et al. Olerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob Agents Chemother. 2004; 48(3):940–945.
  • Dunne MW, Puttagunta S, Sprenger CR et al. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob Agents Chemother. 2015; 59(4):1849–1855.
  • Traynor K Dalbavancin approved for acute skin infections. Am J Health Syst Pharm. 2014;71(13):1062.
  • Barber KE, Tirmizi A, Finley R, et al. Dalbavancin use for the treatment of methicillin-resistant Staphylococcus aureus pneumonia. J Pharmacol Pharmacother. 2017 Apr-Jun;8(2):77–79.
  • Mendes RE, Farrell DJ, Flamm RK, et al. In Vitro activity of lefamulin tested against Streptococcus pneumoniae with defined serotypes, including multidrug-resistant isolates causing lower respiratory tract infections in the United States Antimicrob Agents Chemother. 2016;60(7):4407–4411.
  • Waites KB, Crabb DM, Duffy LB et al. In Vitro activities of lefamulin and other antimicrobial agents against macrolide-susceptible and macrolide-resistant mycoplasma pneumoniae from the United States, Europe, and China. Antimicrob Agents Chemother. 2017; 24(2);61.
  • Zeitlinger M, Schwameis R, Burian A, et al. Simultaneous assessment of the pharmacokinetics of a pleuromutilin, lefamulin, in plasma, soft tissues and pulmonary epithelial lining fluid. J Antimicrob Chemother. 2016;71(4):1022–1026.
  • Liapikou A, Cillóniz C, Torres A Investigational drugs in phase I and phase II clinical trials for the treatment of community-acquired pneumonia Expert Opin Investig Drugs. 2017 Nov;26(11):1239–1248.
  • Van Duin D, Bonomo RA Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 2016; 63:234–241.
  • Sutherland CA, Nicolau DP Susceptibility profile of ceftolozane/tazobactam and other parenteral antimicrobials against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa from US hospitals. Clin Ther 2015; 37:1564–1571
  • Walkty A, Karlowsky JA, Adam H, et al. In vitro activity of ceftolozane-tazobactam against Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals in the CANWARD study, 2007 to 2012. Antimicrob Agents Chemother 2013; 57:5707–5709
  • Farrell DJ, Flamm RK, Sader HS et al. Antimicrobial activity of ceftolozane- tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011–2012). Antimicrob Agents Chemother 2013; 57:6305–6310
  • a. ZERBAXA (ceftolozane/tazobactam) for Injection, for intravenous use. Initial U.S. Approval: 2014. Cubist Pharmaceuticals 2014; Sutherland CA, Crandon JL, Nicolau DP. Defining extended spectrum β-lactamases: implications of minimum inhibitory concentration-based screening versus clavulanate confirmation testing. Infect Dis Ther 2015. In press.
  • Gelfand MS, Cleveland KO Ceftolozane/tazobactam therapy of respiratory infections due to multidrug-resistant Pseudomonas aeruginosa. Clin Infect Dis 2015; 61:853–855.
  • Munita MJ, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa Clin Infect Dis 2017;65(1):158–161.
  • Sutherland CA, Nicolau DPJ Potency of parenteral antimicrobials including ceftolozane/tazobactam against nosocomial respiratory tract pathogens: considerations empiric directed therapy Thorac Dis 2017;9(1):214–221.
  • Kuti JL, Pettit RS, Neu N, et al. Microbiological activity of ceftolozane/tazobactam, ceftazidime, meropenem and piperacillin/tazobactam against Pseudomonas aeruginosa isolated from children with cystic fibrosis. Diagn Microbiol Infect Dis. 2015;83:53–55
  • Dassner MA, Sutherland C, Girotto J, et al. In vitro Activity of ceftolozane/tazobactam alone or with an aminoglycoside against multi-drug- resistant Pseudomonas aeruginosa from pediatric cystic fibrosis patients. Infect Dis Ther. 2017; 6:129–136.
  • Zhanel GG, Lawson CD, Adam H et al. Ceftazidime–avibactam: a novel cephalosporin/-lactamase inhibitor combination. Drugs 2013;73:159–177.
  • Housman ST, Crandon JL, Nichols WW et al. Efficacies of ceftazidime–avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model. Antimicrob Agents Chemother 2014;58:1365–1371.
  • Flamm RK, Sader HS, Nichols WW et al. Activity of ceftazidime–avibactam tested against hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia Gram-negative pathogens from the Europe–Mediterranean region, China, and USA. In: 53rd Interscience Conference of Antimicrobial Agents and Chemotherapy (ICAAC), 2013 Sep 10–13. Denver, CO/ Washington, DC: ASM Press; 2013 [abstractC2-1629]
  • Nichols WW, De Jonge BL, Kazmierczak KM et al. In vitro susceptibility of global surveillance isolates of Pseudomonas aeruginosa to ceftazidime–avibactam (INFORM 2012 to 2014). Antimicrob Agents Chemother 2016;60:4743–4749.
  • Papp-Wallace KM, Becka SA, Zeiser ET, et al. Overcoming an extremely drug resistant (XDR) pathogen: avibactam restores susceptibility to ceftazidime for Burkholderia cepacia complex isolates from cystic fibrosis patients. ACS Infect Dis. 2017 Jul 14;3(7):502–511.
  • Berkhout J, Melchers MJ, Van Mil AC et al. Pharmacodynamics of ceftazidime and avibactam in neutropenic mice with thigh or lung infection. Antimicrob Agents Chemother 2016. 60 (1), 368−375.
  • Hecker SJ, Reddy KR, Totrov M et al. Discovery of a cyclic boronic acid beta-lactamase inhibitor (PRX7009) with utility versus class A serine carbapenemases. J Med Chem 2015 58:3682–3692.
  • Wenzler E, Gotfried MH, Loutit JS et al. Meropenem-RPX7009 concentrations in plasma, epithelial lining fluid, and alveolar macrophages of healthy adult subjects. Antimicrob Agents Chemother 2015 59:7232–7239.
  • Available from: http://www.themedicinescompany.com/investors/news/medicines-company-announces-tango-2-trial-meropenem-vaborbactam-formerly-carbavance –Available from: 2017 Aug 24.
  • Sutcliffe JA, O’Brien W, Fyfe C et al. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother 2013;57:5548–5558.
  • Connors KP, Housman ST, Pope JS, et al. A Phase I. Open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother 2014;58(4): 2113–2118.
  • Rossignol J-F Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res. 2014;110:94‐103.
  • Mir-Shekari SY, Ashford DA, Harvey DJ et al. The glycosylation of the influenza A virus hemagglutinin by mammalian cells a site-specific study. J Biol Chem. 1997;272:4027‐4036.
  • Broekhuysen J, Stockis A, Lins RL et al. Nitazoxanide: pharmacokinetics and metabolism in man. Int J Clin Pharmacol Ther. 2000;38:387‐394.
  • Rossignol JF, La Frazia S, Chiappa L et al. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem. 2009;284:29798‐29808.
  • Haffizulla J, Hartman A, Hoppers M, et al. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2014;14:609‐618
  • Malakhov MP, Aschenbrenner LM, Smee DF, et al. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother. 2006;50:1470‐1479.
  • Triana-Baltzer GB, Babizki M, Chan MC, et al. DAS181, a sialidase fusion protein, protects human airway epithelium against influenza virus infection: an in vitro pharmacodynamic analysis. J Antimicrob Chemother. 2010;65:275‐284.
  • Drozd D, Limaye AP, Moss R, et al. DAS181 treatment of severe parainfluenza type 3 pneumonia in a lung transplant recipient. Transpl Infect Dis. 2013;15:E28‐E32.
  • Zenilman JM, Fuchs EJ, Hendrix CW, et al. Phase 1 clinical trials of DAS181, an inhaled sialidase, in healthy adults. Antiviral Res. 2015;123:114‐119.
  • Takeki Uehara TS, Toru I, Keiko K, et al. S-033188, a small molecule inhibitor of CAP-dependent endonuclease of influenza A and B virus, leads to rapid and profound viral load reduction, in Options for the control of influenza. Chicago, USA: Communication to a convenction; 2016 Aug 28th.
  • Clark MP, Ledeboer MW, Davies I et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J Med Chem 2014, 57:6668–6678.
  • McKimm-Breschkin JL, Fry AM: Meeting report: 4th ISIRV antiviral group conference: novel antiviral therapies for influenza and other respiratory viruses. Antivir Res 2016,129:21–38.
  • Ekiert DC, Friesen RH, Bhabha G, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science. 2011;333:843‐850.
  • Tharakaraman K, Subramanian V, Cain D et al. Broadly neutralizing influenza hemagglutinin stem-specific Antibody CR8020 targets residues that are prone to escape due to host selection pressure. Cell Host Microbe. 2014;15:644‐651.
  • Grandea AG, Olsen OA, Cox TC, et al. Human antibodies reveal a protective epitope that is highly conserved among human and non human influenza A viruses. Proc Natl Acad Sci. 2010;107:12658‐12663.
  • Ramos EL, Mitcham JL, Koller TD, et al. Efficacy and safety of treatment with an anti-M2e monoclonal antibody in experimental human influenza. J Infect Dis. 2014;211:1038‐1044.
  • Baranovich T, Jones JC, Russier M, et al. The hemagglutinin stem-binding monoclonal antibody VIS410 controls influenza virus-induced acute respiratory distress syndrome. Antimicrob Agents Chemother. 2016;60:2118‐2131.
  • Wollacott AM, Boni MF, Szretter KJ, et al. Safety and upper respiratory pharmacokinetics of the hemagglutinin stalk-binding antibody VIS410 support treatment and prophylaxis based on population modeling of seasonal influenza A outbreaks. EBioMedicine. 2016;5:147‐155.
  • Kallewaard NL, Corti D, Collins PJ, et al. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell. 2016;166:596‐608.
  • Gupta P, Kamath AV, Park S, et al. Preclinical pharmacokinetics of MHAA4549A, a human monoclonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A. in mAbs. Convenction communication, Taylor & Francis;.2016.
  • Lim J, Deng R, Derby M, et al. Two phase 1, randomized, double-blind, placebo-controlled, single ascending-dose studies to investigate the safety, tolerability, and pharmacokinetics of an anti-influenza a monoclonal antibody, MHAA4549A, in healthy volunteers. Antimicrob Agents Chemother. 2016;60:5437–5444.
  • Corti D, Voss J, Gamblin SJ, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011;333:850‐856.
  • Friesen RH, Koudstaal W, Koldijk MH, et al. New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets. PLoS One. 2010;5:e9106.
  • Chapman J, Abbott E, Alber DG et al. RSV604, a novel inhibitor of respiratory syncytial virus replication. Antimicrob Agents Chemother. 2007;51(9):3346–3353.
  • Alvarez R, Elbashir S, Borland T et al. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother. 2009; 53(9):3952–3962.
  • Meyers RE, Alvarez R, Tripp R. et al. ALN-RSV01, an RNAi therapeutic for the treatment of respiratory syncytial virus (RSV) infection. Communication to a convenction; 2017. p. E–PAS2007, 616295.12.
  • DeVincenzo J, Cehelsky JE, Alvarez R et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res. 2008;77(3):225–231.
  • Gottlieb J, Zamora MR, Hodges T et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016; 35(2):213–221.
  • Jordan PC, Stevens SK, Tam Y et al. Activation pathway of a nucleoside analog inhibiting respiratory syncytial virus polymerase. ACS Chem Biol. 2017; 12(1):83–91.
  • Wang G, Deval J, Hong J et al. Discovery of 4′-chloromethyl-2′-deoxy-3′,5′-di-O-isobutyryl-2′-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection. J. Med. Chem. 2015. 58, 1862−1878.
  • DeVincenzo JP, McClure MW, Symons JA et al. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N. Engl. J. Med 2015; 373, 2048−2058.
  • Fordyce EAF, Brookes DW, Lise-Ciana C et al. Discovery of novel benzothienoazepine derivatives as potent inhibitors of respiratory syncytial virus Bioorg Med Chem Lett. 2017 May 15;27(10):2201–2206.
  • Douglas JL, Panis ML, Ho E et al. Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms. Antimicrob Agents Chemother. 2005; 49(6):2460–2466.
  • Huntjens DR, Ouwerkerk-Mahadevan S, Brochot A et al. Population pharmacokinetic modeling of JNJ-53718678, a novel fusion inhibitor for the treatment of respiratory syncytial virus: results from a Phase I, double-blind, randomized, placebo-controlled first-in-human study in healthy adult subjects. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0522-8.
  • Roymans D, Alnajjar SS, Battles MB et al. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat Commun. 2017; 8(1):167.
  • Douglas JL, Panis ML, Ho E et al. Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein J Virol. 2003; 77(9):5054–5064.
  • Perron M, Stray K, Kinkade A et al. TGS-5806 Inhibits a broad range of respiratory syncytial virus clinical isolates by blocking the virus-cell fusion process. Antimicrob Agents Chemother. 2015;60(3):1264–1273.
  • Detalle L, Stohr T, Palomo C et al. Generation and characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother. 2015; 60(1):6–13.
  • McLellan JS, Chen M, Leung S et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 2013; 340: 1113–1117.
  • Griffin MP, Khan AA, Esser MT et al. Safety, Tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob Agents Chemother. 2017; 23(3);61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.