371
Views
6
CrossRef citations to date
0
Altmetric
Mini-review

Emerging drugs for progressive supranuclear palsy

&
Pages 83-92 | Received 27 Oct 2018, Accepted 16 Apr 2019, Published online: 20 May 2019

References

  • Boxer AL, Yu JT, Golbe LI, et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 2017;16:552–563.
  • Steele J, Richardson J, Olszewski J. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964;10:333–359.
  • Respondek G, Stamelou M, Kurz C, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord. 2014;29:1758–1766.
  • Respondek G, Kurz C, Arzberger T, et al. Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov Disord. 2017;32:995–1005.
  • Höglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–864.
  • Golbe LI, Davis PH, Schoenberg BS, et al. Prevalence and natural history of progressive supranuclear palsy. Neurology. 1988;38:1031–1034.
  • Nath U, Ben-Shlomo Y, Thomson RG, et al. The prevalence of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) in the UK. Brain. 2001;124:1438–1449.
  • Schrag A, Ben-Shlomo Y, Quinn N. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet. 1999;354:1771–1775.
  • Takigawa H, Kitayama M, Wada-Isoe K, et al. Prevalence of progressive supranuclear palsy in Yonago: change throughout a decade. Brain Behav. 2016;6:4–8.
  • Fleury V, Brindel P, Nicastro N, et al. Descriptive epidemiology of parkinsonism in the canton of Geneva, Switzerland. Park Relat Disord. 2018;54:30–39.
  • Kovacs GG. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol. 2015;41:3–23.
  • Dickson DW, Ahmed Z, Algom AA, et al. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol. 2010;23:394–400.
  • Arena JE, Weigand SD, Whitwell JL, et al. Progressive supranuclear palsy: progression and survival. J Neurol. 2016;263:380–389.
  • Owens E, Josephs KA, Savica R, et al. The clinical spectrum and natural history of pure akinesia with gait freezing. J Neurol. 2016;263:2419–2423.
  • Jecmenica-Lukic M, Petrovic IN, Pekmezovic T, et al. Clinical outcomes of two main variants of progressive supranuclear palsy and multiple system atrophy: a prospective natural history study. J Neurol. 2014;261:1575–1583.
  • Litvan I, Kong M. Rate of decline in progressive supranuclear palsy. Mov Disord. 2014;29:463–468.
  • Schmotz C, Richinger C, Lorenzl S. High burden and depression among late-stage idiopathic parkinson disease and progressive supranuclear palsy caregivers. J Geriatr Psychiatry Neurol. 2017;30:267–272.
  • Uttl B, Santacruz P, Litvan I, et al. Caregiving in progressive supranuclear palsy. Neurology. 1998;51:1303–1309.
  • McCrone P, Payan CAM, Knapp M, et al. The economic costs of progressive supranuclear palsy and multiple system atrophy in France, Germany and the United Kingdom. Uversky VN, editor. PLoS One. 2011;6:e24369.
  • Winter Y, Stamelou M, Cabanel N, et al. Cost-of-illness in multiple system atrophy and progressive supranuclear palsy. J Neurol. 2011;258:1827–1834.
  • Giagkou N, Stamelou M. Therapeutic management of the overlapping syndromes of atypical parkinsonism. CNS Drugs. 2018;32:827–837.
  • Stamelou M, Höglinger G. A review of treatment options for progressive supranuclear palsy. CNS Drugs. 2016;30:629–636.
  • Clerici I, Ferrazzoli D, Maestri R, et al. Rehabilitation in progressive supranuclear palsy: effectiveness of two multidisciplinary treatments. Fasano A, editor. PLoS One. 2017;12:e0170927.
  • Rittman T, Coyle-Gilchrist IT, Rowe JB. Managing cognition in progressive supranuclear palsy. Neurodegener Dis Manag. 2016;6:499–508.
  • Bhatia KP, Stamelou M. Nonmotor features in atypical parkinsonism. Int Rev Neurobiol. 2017;134:1285–1301.
  • Litvan I, Phipps M, Pharr VL, et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology. 2001;57:467–473.
  • Lamb R, Rohrer JD, Lees AJ, et al. Progressive supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options. Curr Treat Options Neurol. 2016;18:42.
  • Eschlböck S, Krismer F, Wenning GK. Interventional trials in atypical parkinsonism. Parkinsonism Relat Disord. 2016;22:S82–S92.
  • Stamelou M, Reuss A, Pilatus U, et al. Short-term effects of coenzyme Q 10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. 2008;23:942–949.
  • Apetauerova D, Scala SA, Hamill RW, et al. CoQ10 in progressive supranuclear palsy: a randomized, placebo-controlled, double-blind trial. Neurol Neuroimmunol Neuroinflammation. 2016;3:e266.
  • Bensimon G, Ludolph A, Agid Y, et al. Riluzole treatment, survival and diagnostic criteria in parkinson plus disorders: the NNIPPS Study. Brain. 2009;132:156–171.
  • Nuebling G, Hensler M, Paul S, et al. PROSPERA: a randomized, controlled trial evaluating rasagiline in progressive supranuclear palsy. J Neurol. 2016;263:1565–1574.
  • Tolosa E, Litvan I, Höglinger GU, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29:470–478.
  • Höglinger GU, Huppertz HJ, Wagenpfeil S, et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord. 2014;29:479–487.
  • Boxer AL, Lang AE, Grossman M, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13:676–685.
  • Boxer AL, Gold M, Huey E, et al. The advantages of frontotemporal degeneration drug development (part 2 of frontotemporal degeneration: the next therapeutic frontier). Alzheimer’s Dement. 2013;9:189–198.
  • Shoeibi A, Olfati N, Litvan I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin Investig Drugs. 2018;27:349–361.
  • Golbe LI, Ohman-Strickland PA. A clinical rating scale for progressive supranuclear palsy. Brain. 2007;130:1552–1565.
  • Hewer S, Varley S, Boxer AL, et al. Minimal clinically important worsening on the progressive supranuclear palsy rating scale. Mov Disord. 2016;31:1574–1577.
  • Hall DA, Forjaz MJ, Golbe LI, et al. Scales to assess clinical features of progressive supranuclear palsy: MDS task force report. Mov Disord Clin Pract. 2015;2:127–134.
  • Höglinger GU, Schöpe J, Stamelou M, et al. Longitudinal magnetic resonance imaging in progressive supranuclear palsy: a new combined score for clinical trials. Mov Disord. 2017;32:842–852.
  • Hammes J, Drzezga A, Van Eimeren T. The role of tau imaging in parkinsonian disorders. Curr Neurol Neurosci Rep. 2018;18:86.
  • Rojas JC, Bang J, Lobach IV, et al. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology. 2018;90:e273-e281.
  • Stamelou M, Boxer AL. Disease-modifying treatments for progressive supranuclear palsy. Mov Disord Clin Pract. 2015;2:3–5.
  • Congdon EE, Sigurdsson EM. Tau-targeting therapies for alzheimer disease. Nat Rev Neurol. 2018;14:399–415.
  • Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain. 2017;140:266–278.
  • Clavaguera F, Bolmont T, Crowther RA, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Bio. 2009;11:909–913.
  • Clavaguera F, Akatsu H, Fraser G, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci. 2013;110:9535–9540.
  • Falcon B, Cavallini A, Angers R, et al. Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem. 2015;290:1049–1065.
  • Wagshal D, Sankaranarayanan S, Guss V, et al. Divergent CSF τ alterations in two common tauopathies: alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86:244–250.
  • Meredith JE, Sankaranarayanan S, Guss V, et al. Characterization of novel CSF tau and ptau biomarkers for alzheimer’s disease. PLoS One. 2013;8:e76523.
  • Sato C, Barthélemy NR, Mawuenyega KG, et al. Tau kinetics in neurons and the human central nervous system. Neuron. 2018;97:1284–1298.e7.
  • Yanamandra K, Kfoury N, Jiang H, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80:402–414.
  • Yanamandra K, Jiang H, Mahan TE, et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol. 2015;2:278–288.
  • West T, Hu Y, Verghese PB, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis. 2017;44:236–241.
  • Boxer A, Qureshi I, Grundman M, et al. Multiple ascending dose study of the tau-directed monoclonal antibody BIIB092 in patients with progressive supranuclear palsy (S27.004). Neurology. 2018; 90.
  • Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36:693–709.
  • Dam T, Boxer A, Golbe LI, et al. Efficacy and safety of BIIB092 in patients with progressive supranuclear palsy: PASSPORT phase 2 study design (P6.073). Neurology. 2018;90.
  • Silberman S, Hwang JH, Marshall JL, et al. A phase I study of TPI 287, a novel taxane, administered weekly in patients with advanced cancer. J Clin Oncol. 2008;26: 2536–2536.
  • Hauser TH, Salastekar N, Schaefer EJ, et al. Effect of targeting inflammation with salsalate. JAMA Cardiol. 2016;1:413.
  • Castellano JM, Kirby ED, Wyss-Coray T. Blood-borne revitalization of the aged brain. JAMA Neurol. 2015;72:1191.
  • Kerchner GA, Ayalon G, Brunstein F, et al. A Phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderateAD. Alzheimer’s Dement. 2017;13:P601.
  • Alam R, Driver D, Wu S, et al. Preclinical characterization of an antibody [LY3303560] targeting aggregated tau. Alzheimer’s Dement. 2017;13:P592–P593.
  • Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16:123–134.
  • Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an alzheimer’s disease model. Alzheimers Res Ther. 2014;6:44.
  • Gauthier S, Feldman HH, Schneider LS, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet. 2016;388:2873–2884.
  • Wilcock GK, Gauthier S, Frisoni GB, et al. Potential of low dose leuco-methylthioninium Bis(Hydromethanesulphonate) (LMTM) monotherapy for treatment of mild alzheimer’s disease: cohort analysis as modified primary outcome in a phase iii clinical trial. J Alzheimer’s Dis. 2018;61:435–457.
  • Pagan F, Hebron M, Valadez EH, et al. Nilotinib effects in parkinson’s disease and dementia with lewy bodies. J Parkinsons Dis. 2016;6:503–517.
  • Hebron ML, Javidnia M, Moussa CEH. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–99.
  • Wyse RK, Brundin P, Sherer TB. Nilotinib – differentiating the hope from the hype. J Parkinsons Dis. 2016;6:519–522.
  • Fricker RA, Green EL, Jenkins SI, et al. The influence of nicotinamide on health and disease in the central nervous system. Int J Tryptophan Res. 2018;11:1178646918776658.
  • Mignon L, Kordasiewicz H, Lane R, et al. Design of the first-in-human study of IONIS-MAPTRx, a Tau-lowering antisense oligonucleotide, in patients with alzheimer disease (S2.006). Neurology. 2018;90.
  • DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9.
  • Rossor AM, Reilly MM, Sleigh JN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol. 2018;18:126–131.
  • Tabrizi S, Leavitt B, Kordasiewicz H, et al. Effects of IONIS-HTTRx in patients with early huntington’s disease, results of the first HTT-lowering drug trial (CT.002). Neurology. 2018;90.
  • Drugs@FDA: FDA approved drug products [Internet]. Silver Spring (MD): U.S. Food and Drug Administration; 2007. [cited 2018 Oct 10]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/
  • Tegsedi [Internet]. London: European Medicines Agency; 2018. [cited 2018 Oct 13]. Available from: https://www.ema.europa.eu/medicines/human/EPAR/tegsedi
  • Wisniewski T, Goñi F. Immunotherapeutic approaches for alzheimer’s disease. Neuron. 2015;85:1162–1176.
  • Qosa H, Volpe DA. The development of biological therapies for neurological diseases: moving on from previous failures. Expert Opin Drug Discov. 2018;13:283–293.
  • Register of designated orphan medicinal products (alphabetical) [Internet]. [cited 2018 Oct 10]. Available from: http://ec.europa.eu/health/documents/community-register/html/alforphreg.htm
  • The Lancet Neurology. Treating rare disorders: time to act on unfair prices. Lancet Neurol. 2017;16:761.
  • Antoñanzas F, Juárez-Castelló CA, Rodríguez-Ibeas R. EMA Priority Medicines scheme (PRIME): will more paying-for-performance agreements be needed due to immature data? Eur. J Heal Econ. 2018;19:905–907.
  • Pariser AR, Robb M, Sherman RE. Expedited programs for drug development and approval. Expert Opin Orphan Drugs. 2013;1:507–510.
  • Gellad WF, Kesselheim AS. Accelerated approval and expensive drugs – a challenging combination. N Engl J Med. 2017;376:2001–2004.
  • Mitsumoto J, Dorsey ER, Beck CA, et al. Pivotal studies of orphan drugs approved for neurological diseases. Ann Neurol. 2009;66:184–190.
  • Kesselheim AS, Myers JA, Avorn J. Characteristics of clinical trials to support approval of orphan vs nonorphan drugs for cancer. JAMA. 2011;305:2320–2326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.