914
Views
40
CrossRef citations to date
0
Altmetric
Review

An update on emerging drugs in osteosarcoma: towards tailored therapies?

, , , &
Pages 153-171 | Received 30 May 2019, Accepted 07 Aug 2019, Published online: 14 Aug 2019

References

  • Gatta G, Botta L, Rossi S, et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5–a population-based study. Lancet Oncol. 2014 Jan;15(1):35–47.
  • Isakoff MS, Bielack SS, Meltzer P, et al. OSTEOSARCOMA:current treatment and a collaborative pathway to success. J Clin Oncol. 2015 Sep 20;33(27):3029–3035.
  • Picci P. Classic osteosarcoma. In: Picci P, Manfrini M, Fabbri N, et al., editors. Atlas of musculoskeletal tumors and tumorlike lesions. Cham: Springer International Publishing Switzerland; 2014. p. 147–152.
  • Bruland OS, Pihl A. On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer. 1997 Oct;33(11):1725–1731.
  • Allison DC, Carney SC, Ahlmann ER, et al. A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma. 2012;2012:704872.
  • Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol. 2017 Feb;13(4):357–368.
  • Simpson E, Brown HL. Understanding osteosarcomas. JAAPA. 2018 Aug;31(8):15–19.
  • Anninga JK, Gelderblom H, Fiocco M, et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand?. Eur J Cancer. 2011 Nov;47(16):2431–2445.
  • Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.
  • Bacci G, Briccoli A, Longhi A, et al. Treatment and outcome of recurrent osteosarcoma: experience at Rizzoli in 235 patients initially treated with neoadjuvant chemotherapy. Acta Oncol. 2005;44(7):748–755.
  • Gelderblom H, Jinks RC, Sydes M, et al. Survival after recurrent osteosarcoma: data from 3 European Osteosarcoma Intergroup (EOI) randomized controlled trials. Eur J Cancer. 2011 Apr;47(6):895–902.
  • Kempf-Bielack B, Bielack SS, Jurgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol. 2005 Jan 20;23(3):559–568.
  • Berner K, Hall KS, Monge OR, et al. Prognostic factors and treatment results of high-grade osteosarcoma in norway: a scope beyond the “classical” patient. Sarcoma. 2015;2015:516843.
  • Anderson PM, Tomaras M, McConnell K. Mifamurtide in osteosarcoma–a practical review. Drugs Today (Barc). 2010 May;46(5):327–337.
  • Jimmy R, Stern C, Lisy K, et al. Effectiveness of mifamurtide in addition to standard chemotherapy for high-grade osteosarcoma: a systematic review. JBI Database System Rev Implement Rep. 2017 Aug;15(8):2113–2152.
  • Kager L, Potschger U, Bielack S. Review of mifamurtide in the treatment of patients with osteosarcoma. Ther Clin Risk Manag. 2010 Jun;24(6):279–286.
  • Hattinger CM, Vella S, Tavanti E, et al. Pharmacogenomics of second-line drugs used for treatment of unresponsive or relapsed osteosarcoma patients. Pharmacogenomics. 2016 Dec;17(18):2097–2114.
  • Smeland S, Bielack SS, Whelan J. et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50.
  • Bielack SS, Smeland S, Whelan JS, et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon Alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first Results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol. 2015 Jul 10;33(20):2279–2287.
  • Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016 Oct;17(10):1396–1408.
  • Le Deley MC, Guinebretiere JM, Gentet JC, et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur J Cancer. 2007 Mar;43(4):752–761.
  • Piperno-Neumann S, Le Deley MC, Redini F, et al. Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016 Aug;17(8):1070–1080.
  • Bacci G, Briccoli A, Ferrari S, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with synchronous lung metastases: treatment with cisplatin, adriamycin and high dose of methotrexate and ifosfamide. Oncol Rep. 2000 Mar–Apr;7(2):339–346.
  • Kager L, Zoubek A, Potschger U, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003 May 15;21(10):2011–2018.
  • Bacci G, Fabbri N, Balladelli A, et al. Treatment and prognosis for synchronous multifocal osteosarcoma in 42 patients. J Bone Joint Surg Br. 2006 Aug;88(8):1071–1075.
  • Ferguson WS, Harris MB, Goorin AM, et al. Presurgical window of carboplatin and surgery and multidrug chemotherapy for the treatment of newly diagnosed metastatic or unresectable osteosarcoma: pediatric oncology group trial. J Pediatr Hematol Oncol. 2001 Aug–Sep;23(6):340–348.
  • Harris MB, Gieser P, Goorin AM, et al. Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol. 1998 Nov;16(11):3641–3648.
  • Meyer WH, Pratt CB, Poquette CA, et al. Carboplatin/ifosfamide window therapy for osteosarcoma: results of the St Jude Children’s Research Hospital OS-91 trial. J Clin Oncol. 2001 Jan 1;19(1):171–182.
  • Seibel NL, Krailo M, Chen Z, et al. Upfront window trial of topotecan in previously untreated children and adolescents with poor prognosis metastatic osteosarcoma: children’s Cancer Group (CCG) 7943. Cancer. 2007 Apr 15;109(8):1646–1653.
  • Xiao X, Wang W, Wang Z. The role of chemotherapy for metastatic, relapsed and refractory osteosarcoma. Paediatr Drugs. 2014 Dec;16(6):503–512.
  • Omer N, Le Deley MC, Piperno-Neumann S. et al. Phase-II trials in osteosarcoma recurrences: a systematic review of past experience. Eur J Cancer. 2017;75:98–108.
  • van Maldegem AM, Bhosale A, Gelderblom HJ, et al. Comprehensive analysis of published phase I/II clinical trials between 1990–2010 in osteosarcoma and Ewing sarcoma confirms limited outcomes and need for translational investment. Clin Sarcoma Res. 2012 Jan 27;2(1):5.
  • Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother. 2015;16(18):2727–2736.
  • Tamamyan G, Dominkus M, Lang S, et al. Multiple relapses in high-grade osteosarcoma: when to stop aggressive therapy? Pediatr Blood Cancer. 2015 Mar;62(3):529–530.
  • Kager L, Zoubek A, Kastner U, et al. Skip metastases in osteosarcoma: experience of the Cooperative Osteosarcoma Study Group. J Clin Oncol. 2006 Apr 1;24(10):1535–1541.
  • Sajadi KR, Heck RK, Neel MD, et al. The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop Relat Res. 2004 Sep;426(426):92–96.
  • Berger M, Grignani G, Ferrari S, et al. Phase 2 trial of two courses of cyclophosphamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer. 2009 Jul 1;115(13):2980–2987.
  • Bielack SS, Kempf-Bielack B, Branscheid D, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol. 2009 Feb 1;27(4):557–565.
  • Briccoli A, Rocca M, Salone M, et al. High grade osteosarcoma of the extremities metastatic to the lung: long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surg Oncol. 2010 Dec;19(4):193–199.
  • Sayles LC, Breese MR, Koehne AL, et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 2019 Jan;9(1):46–63.
  • Roberts RD, Lizardo MM, Reed DR, et al. Provocative questions in osteosarcoma basic and translational biology: a report from the Children’s Oncology Group. Cancer. 2019 Jul 29.
  • Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol. 2018 Apr;233(4):2949–2965.
  • Miwa S, Yamamoto N, Hayashi K, et al. Therapeutic targets for bone and soft-tissue sarcomas. Int J Mol Sci. 2019 4;20(1):Jan.
  • Kasper B, Sleijfer S, Litiere S, et al. Long-term responders and survivors on pazopanib for advanced soft tissue sarcomas: subanalysis of two European Organisation for Research and Treatment of Cancer (EORTC) clinical trials 62043 and 62072. Ann Oncol. 2014 Mar;25(3):719–724.
  • Sleijfer S, Ray-Coquard I, Papai Z, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol. 2009 Jul 1;27(19):3126–3132.
  • van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012 May 19;379(9829):1879–1886.
  • Safwat A, Boysen A, Lucke A, et al. Pazopanib in metastatic osteosarcoma: significant clinical response in three consecutive patients. Acta Oncol. 2014 Oct;53(10):1451–1454.
  • Zheng B, Ren T, Huang Y, et al. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem Biophys Res Commun. 2018 Jan 8;495(2):1695–1701.
  • Xie L, Guo W, Wang Y, et al. Apatinib for advanced sarcoma: results from multiple institutions’ off-label use in China. BMC Cancer. 2018 Apr 6;18(1):396.
  • Zheng K, Xu M, Wang L, et al. Efficacy and safety of apatinib in advance osteosarcoma with pulmonary metastases: a single-center observational study. Medicine (Baltimore). 2018 Aug;97(31):e11734.
  • Zhu B, Li J, Xie Q, et al. Efficacy and safety of apatinib monotherapy in advanced bone and soft tissue sarcoma: an observational study. Cancer Biol Ther. 2018 Mar 4;19(3):198–204.
  • Capozzi M, De Divitiis C, Ottaiano A, et al. Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag Res. 2019;11:3847–3860.
  • Suyama K, Iwase H. Lenvatinib: a promising molecular targeted agent for multiple cancers. Cancer Control. 2018 Jan–Dec;25(1):1073274818789361.
  • Glen H, Mason S, Patel H, et al. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer. 2011 Jul 22;11:309.
  • Bruheim S, Kristian A, Uenaka T, et al. Antitumour activity of oral E7080, a novel inhibitor of multiple tyrosine kinases, in human sarcoma xenografts. Int J Cancer. 2011 Aug 1;129(3):742–750.
  • Wilhelm SM, Dumas J, Adnane L, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011 Jul 1;129(1):245–255.
  • Mross K, Frost A, Steinbild S, et al. A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res. 2012 May 1;18(9):2658–2667.
  • Davis LE, Bolejack V, Ryan CW, et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J Clin Oncol. 2019 Jun 1;37(16):1424–1431.
  • Duffaud F, Mir O, Boudou-Rouquette P, et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019 Jan;20(1):120–133.
  • Fioramonti M, Fausti V, Pantano F, et al. Cabozantinib affects osteosarcoma growth through a direct effect on tumor cells and modifications in bone microenvironment. Sci Rep. 2018 Mar 8;8(1):4177.
  • Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev. 2013 Nov;39(7):793–801.
  • Katoh M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol Sci. 2016 Dec;37(12):1081–1096.
  • Perera TPS, Jovcheva E, Mevellec L, et al. Discovery and pharmacological characterization of JNJ-42756493 (Erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol Cancer Ther. 2017 Jun;16(6):1010–1020.
  • Tabernero J, Bahleda R, Dienstmann R, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015 Oct 20;33(30):3401–3408.
  • Mills CC, Kolb EA, Sampson VB. Recent advances of cell-cycle inhibitor therapies for pediatric cancer. Cancer Res. 2017 Dec 1;77(23):6489–6498.
  • Zhou Y, Shen JK, Yu Z, et al. Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim Biophys Acta Mol Basis Dis. 2018 May;1864(5 Pt A):1573–1582.
  • Hennessy BT, Smith DL, Ram PT, et al. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005 Dec;4(12):988–1004.
  • Hattinger CM, Fanelli M, Tavanti E, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015 Sep;20(3):495–514.
  • Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015 Jan;16(1):98–107.
  • Schwartz GK, Tap WD, Qin LX, et al. Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol. 2013 Apr;14(4):371–382.
  • Wagner LM, Fouladi M, Ahmed A, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015 Mar;62(3):440–444.
  • Hattinger CM, Patrizio MP, Luppi S, et al. Current understanding of pharmacogenetic implications of DNA damaging drugs used in osteosarcoma treatment. Expert Opin Drug Metab Toxicol. 2019 Apr;15(4):299–311.
  • Hall AB, Newsome D, Wang Y, et al. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget. 2014 Jul 30;5(14):5674–5685.
  • Stewart E, Goshorn R, Bradley C, et al. Targeting the DNA repair pathway in Ewing sarcoma. Cell Rep. 2014 Nov 6;9(3):829–841.
  • Pignochino Y, Capozzi F, D’Ambrosio L, et al. PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models. Mol Cancer. 2017 Apr 28;16(1):86.
  • Park HJ, Bae JS, Kim KM, et al. The PARP inhibitor olaparib potentiates the effect of the DNA damaging agent doxorubicin in osteosarcoma. J Exp Clin Cancer Res. 2018 May 21;37(1):107.
  • Engert F, Kovac M, Baumhoer D, et al. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget. 2017 Jul 25;8(30):48794–48806.
  • Roskoski R Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res. 2019 Apr;142:151–168.
  • Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Mol Cancer Ther. 2017 Nov;16(11):2351–2363.
  • Sullivan RJ, Infante JR, Janku F, et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 2018 Feb;8(2):184–195.
  • Garbe C, Eigentler TK. Vemurafenib. Recent Results Cancer Res. 2018;211:77–89.
  • Gouravan S, Meza-Zepeda LA, Myklebost O, et al. Preclinical evaluation of Vemurafenib as therapy for BRAF(V600E) mutated sarcomas. Int J Mol Sci. 2018 Mar 23;19(4):969.
  • Scott LJ. Larotrectinib: first global approval. Drugs. 2019 Feb;79(2):201–206.
  • DuBois SG, Laetsch TW, Federman N, et al. The use of neoadjuvant larotrectinib in the management of children with locally advanced TRK fusion sarcomas. Cancer. 2018 Nov 1;124(21):4241–4247.
  • Laetsch TW, Hawkins DS. Larotrectinib for the treatment of TRK fusion solid tumors. Expert Rev Anticancer Ther. 2018 Oct;23:1–10.
  • Antunes BP, Becker RG, Brunetto AT, et al. Expression of neurotrophins and their receptors in primary osteosarcoma. Rev Col Bras Cir. 2019 May 9;46(2):e2094.
  • Ganjoo KN, Wakelee H. Review of erlotinib in the treatment of advanced non-small cell lung cancer. Biologics. 2007 Dec;1(4):335–346.
  • Prados MD, Lamborn KR, Chang S, et al. Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol. 2006 Jan;8(1):67–78.
  • Walz A, Ugolkov A, Chandra S, et al. Molecular pathways: revisiting glycogen synthase kinase-3beta as a target for the treatment of cancer. Clin Cancer Res. 2017 Apr 15;23(8):1891–1897.
  • Houghton PJ, Kurmasheva RT, Kolb EA, et al. Initial testing (stage 1) of the tubulin binding agent nanoparticle albumin-bound (nab) paclitaxel (Abraxane((R))) by the Pediatric Preclinical Testing Program (PPTP). Pediatr Blood Cancer. 2015 Jul;62(7):1214–1221.
  • Yang Y, Niu X, Zhang Q, et al. The efficacy of abraxane on osteosarcoma xenografts in nude mice and expression of secreted protein, acidic and rich in cysteine. Am J Med Sci. 2012 Sep;344(3):199–205.
  • Zhang L, Marrano P, Kumar S, et al. Nab-paclitaxel is an active drug in preclinical model of pediatric solid tumors. Clin Cancer Res. 2013 Nov 1;19(21):5972–5983.
  • Moreno L, Casanova M, Chisholm JC. et al. Phase I results of a phase I/II study of weekly nab-paclitaxel in paediatric patients with recurrent/refractory solid tumours: a collaboration with innovative therapies for children with cancer. Eur J Cancer. 2018;100:27–34.
  • Serretti A, Drago A, De Ronchi D. Lithium pharmacodynamics and pharmacogenetics: focus on inositol mono phosphatase (IMPase), inositol poliphosphatase (IPPase) and glycogen sinthase kinase 3 beta (GSK-3 beta). Curr Med Chem. 2009;16(15):1917–1948.
  • Bgatova NP, Borodin YI, Makarova VV, et al. Effects of nanosized lithium carbonate particles on intact muscle tissue and tumor growth. Bull Exp Biol Med. 2014 May;157(1):89–94.
  • Shippey EA, Wagler VD, Collamer AN. Hydroxychloroquine: an old drug with new relevance. Cleve Clin J Med. 2018 Jun;85(6):459–467.
  • Santiago-O’Farrill JM, Kleinerman ES, Hollomon MG, et al. Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy. Oncotarget. 2018 Jan 5;9(2):1602–1616.
  • Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 2003 Aug 1;98(3):581–589.
  • Serra M, Pasello M, Manara MC, et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian sarcoma group 1 treatment protocol. Int J Oncol. 2006 Dec;29(6):1459–1468.
  • Serra M, Scotlandi K, Reverter-Branchat G, et al. Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol. 2003 Feb 1;21(3):536–542.
  • Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017 Nov;18(11):1493–1501.
  • Poon VI, Roth M, Piperdi S, et al. Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin Sarcoma Res. 2015;5(1):4.
  • Roth M, Linkowski M, Tarim J, et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014 Feb 15;120(4):548–554.
  • Lettieri CK, Appel N, Labban N, et al. Progress and opportunities for immune therapeutics in osteosarcoma. Immunotherapy. 2016 Oct;8(10):1233–1244.
  • Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: where do we go from here? Pediatr Blood Cancer. 2018 Sep;65(9):e27227.
  • Patnaik A, Weiss GJ, Leonard JE, et al. Safety, pharmacokinetics, and pharmacodynamics of a humanized anti-semaphorin 4D antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2016 Feb 15;22(4):827–836.
  • Moriarity BS, Otto GM, Rahrmann EP, et al. A sleeping beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet. 2015 Jun;47(6):615–624.
  • Koksal H, Muller E, Inderberg EM, et al. Treating osteosarcoma with CAR T cells. Scand J Immunol. 2019 Mar;89(3):e12741.
  • Sacchetti B, Botticelli A, Pierelli L, et al. CAR-T with license to kill solid tumors in search of a winning strategy. Int J Mol Sci. 2019 Apr 17;20(8):1903.
  • Roth M, Barris DM, Piperdi S, et al. Targeting glycoprotein NMB with antibody-drug conjugate, glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr Blood Cancer. 2016 Jan;63(1):32–38.
  • Kolb EA, Gorlick R, Reynolds CP, et al. Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatr Blood Cancer. 2013 Aug;60(8):1325–1332.
  • Fanelli M, Hattinger CM, Vella S, et al. Targeting ABCB1 and ABCC1 with their specific inhibitor CBT-1(R) can overcome drug resistance in osteosarcoma. Curr Cancer Drug Targets. 2016;16(3):261–274.
  • Carnevale J, Ko AH. MM-398 (nanoliposomal irinotecan): emergence of a novel therapy for the treatment of advanced pancreatic cancer. Future Oncol. 2016 Feb;12(4):453–464.
  • Tran S, DeGiovanni PJ, Piel B, et al. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017 Dec 11;6(1):44.
  • Kneidl B, Peller M, Winter G, et al. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine. 2014;9:4387–4398.
  • Buondonno I, Gazzano E, Tavanti E, et al. Endoplasmic reticulum-targeting doxorubicin: a new tool effective against doxorubicin-resistant osteosarcoma. Cell Mol Life Sci. 2019 Feb;76(3):609–625.
  • Gazzano E, Buondonno I, Marengo A, et al. Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett. 2019 Aug 1;456:29–39.
  • Ruiz MC, Resasco A, Di Virgilio AL, et al. In vitro and in vivo anticancer effects of two quinoline-platinum(II) complexes on human osteosarcoma models. Cancer Chemother Pharmacol. 2019 Apr;83(4):681–692.
  • Sun Y, Zhao J, Ji Z. Bifunctional platinum(II) complexes with bisphosphonates substituted diamine derivatives: synthesis and in vitro cytotoxicity. Chem Biodivers. 2017 Dec;14(12):e1700348.
  • Zhang Z, Zhu Z, Luo C, et al. A potential bone-targeting hypotoxic platinum(II) complex with an unusual cytostatic mechanism toward osteosarcoma cells. Inorg Chem. 2018 Mar 19;57(6):3315–3322.
  • Gonzalez-Fernandez Y, Imbuluzqueta E, Patino-Garcia A, et al. Antitumoral-lipid-based nanoparticles: a platform for future application in osteosarcoma therapy. Curr Pharm Des. 2015;21(42):6104–6124.
  • Gonzalez-Fernandez Y, Imbuluzqueta E, Zalacain M, et al. Doxorubicin and edelfosine lipid nanoparticles are effective acting synergistically against drug-resistant osteosarcoma cancer cells. Cancer Lett. 2017 Mar 1;388:262–268.
  • Martella E, Ferroni C, Guerrini A, et al. Functionalized keratin as nanotechnology-based drug delivery system for the pharmacological treatment of osteosarcoma. Int J Mol Sci. 2018 Nov 20;19(11):3670.
  • Ferraiuolo M, Pulito C, Finch-Edmondson M, et al. Agave negatively regulates YAP and TAZ transcriptionally and post-translationally in osteosarcoma cell lines. Cancer Lett. 2018 Oct 1;433:18–32.
  • Hattinger CM, Patrizio MP, Tavanti E, et al. Genetic testing for high-grade osteosarcoma: a guide for future tailored treatments? Expert Rev Mol Diagn. 2018 Nov;18(11):947–961.
  • Kager L, Diakos C, Bielack S. Can pharmacogenomics help to improve therapy in patients with high-grade osteosarcoma? Expert Opin Drug Metab Toxicol. 2015 Jul;11(7):1025–1028.
  • Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010 Oct;9(10):775–789.
  • Li Z, Dou P, Liu T, et al. Application of long noncoding RNAs in osteosarcoma: biomarkers and therapeutic targets. Cell Physiol Biochem. 2017;42(4):1407–1419.
  • Varshney J, Subramanian S. MicroRNAs as potential target in human bone and soft tissue sarcoma therapeutics. Front Mol Biosci. 2015;2:31.
  • Grobner SN, Worst BC, Weischenfeldt J, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018 Mar 15;555(7696):321–327.
  • Ma X, Liu Y, Alexandrov LB, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. 2018 Mar 15;555(7696):371–376.
  • Negri GL, Grande BM, Delaidelli A, et al. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol. 2019 Jun 24. Epub ahead of print.
  • Worst BC, van Tilburg CM, Balasubramanian GP. et al. Next-generation personalised medicine for high-risk paediatric cancer patients - The INFORM pilot study. Eur J Cancer. 2016;65:91–101.
  • Cheng L, Pandya PH, Liu E, et al. Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma. BMC Med Genomics. 2019 Jan 31;12(Suppl S1):23.
  • Chaiyawat P, Settakorn J, Sangsin A, et al. Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Ther. 2017;10:565–577.
  • Weidenbusch B, Richter GHS, Kesper MS, et al. Transcriptome based individualized therapy of refractory pediatric sarcomas: feasibility, tolerability and efficacy. Oncotarget. 2018 Apr 17;9(29):20747–20760.
  • Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2017 Jan;17(1):11–20.
  • Vos HI, Coenen MJ, Guchelaar HJ, et al. The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov Today. 2016 Nov;21(11):1775–1786.
  • Gourley C, Balmana J, Ledermann JA, et al. Moving from poly (ADP-Ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J Clin Oncol. 2019 May 3;JCO1802050.
  • Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019 Apr;568(7753):511–516.
  • Zhi LQ, Yang YX, Yao SX, et al. Identification of novel target for osteosarcoma by network analysis. Med Sci Monit. 2018 Aug 25;24:5914–5924.
  • Garcia-Aranda M, Redondo M. Targeting protein kinases to enhance the response to anti-PD-1/PD-L1 Immunotherapy. Int J Mol Sci. 2019 May 9;20(9):2296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.