1,571
Views
48
CrossRef citations to date
0
Altmetric
Review

Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: an update on emerging drugs

, , , , , , , , , , , & ORCID Icon show all
Pages 319-335 | Received 06 May 2020, Accepted 07 Aug 2020, Published online: 20 Aug 2020

References

  • Alzheimer’s Disease Facts and Figures. 2019. [cited 2020 Aug 5]. Available from: https://www.alz.org/alzheimers-dementia/facts-figures
  • Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15(2):73–88.
  • Panza F, Lozupone M, Seripa D, et al. Amyloid-β immunotherapy for alzheimer disease: is it now a long shot? Ann Neurol. 2019;85(3):303–315.
  • Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–192.
  • Johnson KA, Minoshima S, Bohnen N, et al., Alzheimer’s association; society of nuclear medicine and molecular imaging; amyloid imaging taskforce. appropriate use criteria for amyloid pet: a report of the amyloid imaging task force, the society of nuclear medicine and molecular imaging, and the Alzheimer’s association. Alzheimers Dement. 9(1): e–1–16. 2013.
  • Rossini PM, Di Iorio R, Vecchio F, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signals analysis. An IFCN-sponsored panel of experts. Clin Neurophysiol. 2020;131(6):1287–1310.
  • Panza F, Lozupone M, Watling M, et al. Do BACE inhibitor failures in Alzheimer patients challenge the amyloid hypothesis of the disease? Expert Rev Neurother. 2019;19(7):599–602.
  • NICE. Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease. London: National Institute for Health and Care Excellence; 2011.
  • Li DD, Zhang YH, Zhang W, et al. Meta-Analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci. 2019;13:472.
  • Kishi T, Matsunaga S, Oya K, et al. Memantine for Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis. 2017;60(2):401–425.
  • Lopez OL, Becker JT, Wisniewski S, et al. Cholinesterase inhibitor treatment alters the natural history of Alzheimer’ s disease. J Neurol Neurosurg Psychiatr. 2002;72(2):310–314.
  • Gauthier S, Molinuevo JL. Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer’s disease. Alzheimers Dement. 2013;9(3):326–331.
  • Gasper MC, Ott BR, Lapane KL. Is Donepezil therapy associated with reduced mortality in nursing home residents with dementia? Am J Geriatr Pharmacother. 2005;3(1):1–7.
  • Zhu CW, Livote EE, Scarmeas N, et al. Long-term associations between cholinesterase inhibitors and memantine use and health outcomes among patients with Alzheimer’s disease. Alzheimers Dement. 2013;9(6):733–740.
  • Bartus RT, Dean RL 3rd, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–414.
  • Doody RS, Stevens JC, Beck C, et al. Practice parameter: management of dementia (an evidence based review). Report of the quality standards subcommittee of the American academy of neurology. Neurology. 2001;56(9):1154–1166.
  • Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;2017(13):325–373.
  • IMS Health. White paper IMS disease insight. Alfinito P. innovative therapies innovative therapies for Alzheimer’s disease. New treatments will drive significant market. [cited 2020 Aug 5]. Available from: http://www.pharma-iq.com/pre-clinical-discovery-and-development/white-papers/ims-disease-insights-%E2%80%93-alzheimer%E2%80%99s-disease
  • Qian X, Hamad B, Dias-Lalcaca G. The Alzheimer disease market. Nat Rev Drug Discov. 2015;14(10):675–676.
  • Panza F, Seripa D, Solfrizzi V, et al. Emerging drugs to reduce abnormal β-amyloid protein in Alzheimer’s disease patients. Expert Opin Emerg Drugs. 2016;21(4):377–391.
  • Kandalepas PC, Sadleir KR, Eimer WA, et al. The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013;126(3):329–352.
  • Lorenzo A, Yankner BA. Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Ann N Y Acad Sci. 1996;777:89–95.
  • He Y, Zheng MM, Ma Y, et al. Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun. 2012;429:125–130.
  • Panza F, Lozupone M, Solfrizzi V, et al. Time to test antibacterial therapy in Alzheimer’s disease. Brain. 2019;142(10):2905–2929.
  • Eckert SH, Gaca J, Kolesova N, et al. Mitochondrial pharmacology of dimebon (latrepirdine) calls for a new look at its possible therapeutic potential in Alzheimer’s disease. Aging Dis. 2018;9(4):729–744.
  • Cukierman DS, Accardo E, Gomes RG, et al. Aroylhydrazones constitute a promising class of ‘metal-protein attenuating compounds’ for the treatment of Alzheimer’s disease: a proof-of-concept based on the study of the interactions between zinc (II) and pyridine-2-carboxaldehyde isonicotinoyl hydrazone. J Biol Inorg Chem. 2018;23(8):1227–1241.
  • Mohs RC, Shiovitz TM, Tariot PN, et al. Atomoxetine augmentation of cholinesterase inhibitor therapy in patients with Alzheimer disease: 6-month, randomized, double-blind, placebo-controlled, parallel-trial study. Am J Geriatr Psychiatry. 2009;17(9):752–759.
  • Nirogi R, Shinde A, Kambhampati RS, et al. Discovery and development of 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole dimesylate monohydrate (SUVN-502): a novel, potent, selective and orally active serotonin 6 (5-HT6) receptor antagonist for potential treatment. J Med Chem. 2017;60(5):1843–1859.
  • Hey JA, Yu JY, Versavel M, et al. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clin Pharmacokinet. 2018;57(3):315–333.
  • Mandel RJ. CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr Opin Mol Ther. 2010;12(2):240–247.
  • Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet. 2008;372(9634):207–215.
  • Rauch JN, Luna G, Guzman E, et al. LRP1 is a master regulator of tau uptake and spread. Nature. 2020;580(7803):381–385.
  • Seripa D, Solfrizzi V, Imbimbo BP, et al. Tau-directed approaches for the treatment of Alzheimer’s disease: focus on leuco-methylthioninium. Expert Rev Neurother. 2016;16(3):259–277.
  • Panza F, Lozupone M, Seripa D, et al. Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol. 2020;16(4):213–228.
  • Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562.
  • Jack CR Jr., Knopman DS, Jagust WJ, et al., Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12(2): 207–216. 2013.
  • D’Onofrio G, Panza F, Frisardi V, et al. Advances in the identification of γ-secretase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Discov. 2012;7(1):19–37.
  • Villemagne VL, Rowe CC, Barnham KJ, et al. A randomized, exploratory molecular imaging study targeting amyloid β with a novel 8-OH quinoline in Alzheimer’s disease: the PBT2-204 IMAGINE study. Alzheimers Dement. 2017;3(4):622–635.
  • Salloway S, Sperling R, Keren R, et al. A phase 2 randomized trial of ELND005, scylloinositol, in mild to moderate Alzheimer disease. Neurology. 2011;77(13):1253–1262.
  • Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med. 2019;380(15):1408–1420.
  • Henley D, Raghavan N, Sperling R, et al. Preliminary results of a trial of atabecestat in preclinical Alzheimer’s disease. N Engl J Med. 2019;380(15):1483–1485.
  • Willem M, Garratt AN, Novak B, et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006;314(5799):664–666.
  • Imbimbo BP, Watling M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs. 2019;28(11):967–975.
  • Sato T, Shimogaito N, Wu X, et al. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2006;21(3):197–208.
  • Sabbagh MN, Agro A, Bell J, et al. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25(3):206–212.
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.
  • Hampel H, Caraci F, Cuello AC, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456.
  • Meyer PF, Tremblay-Mercier J, Leoutsakos J, et al. INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease [published correction appears in neurology. 2019 Aug 20;93(8):371]. Neurology. 2019;92(18):e2070–e2080.
  • Peretto I, Radaelli S, Parini C, et al. Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of beta-amyloid secretion. J Med Chem. 2005;48(18):5705–5720.
  • Zanotti G, Cendron L, Folli C, et al. Structural evidence for native state stabilization of a conformationally labile amyloidogenic transthyretin variant by fibrillogenesis inhibitors. FEBS Lett. 2013;587(15):2325–2331.
  • Qiang L, Guan Y, Li X, et al. CSP-1103 (CHF5074) stabilizes human transthyretin in healthy human subjects. Amyloid. 2017;24(1):42–51.
  • Ross J, Sharma S, Winston J, et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double blind, placebo-controlled study. Curr Alzheimer Res. 2013;10(7):742–753.
  • Loconte V, Menozzi I, Ferrari A, et al. Structure-activity relationships of flurbiprofen analogues as stabilizers of the amyloidogenic protein transthyretin. J Struct Biol. 2019;208(2):165–173.
  • Hori Y, Takeda S, Cho H, et al. A food and drug administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. J Biol Chem. 2015;290(4):1966–1978.
  • in 't Veld BA, Launer LJ, Hoes AW, et al. NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol Aging. 1998;19(6):607–611.
  • Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000;20(15):5709–5714.
  • Weggen S, Eriksen JL, Das P, et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212–216.
  • Lleó A, Berezovska O, Herl L, et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med. 2004;10(10):1065–1066.
  • Vlad SC, Miller DR, Kowall NW, et al. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology. 2008;70(19):1672–1677.
  • Pasqualetti P, Bonomini C, Dal Forno G, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res. 2009;21(2):102–110.
  • Jaturapatporn D, Isaac MG, McCleery J, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev. 2012;(2):CD006378.
  • Ryan J, Storey E, Murray AM, et al. Randomized placebo-controlled trial of the effects of aspirin on dementia and cognitive decline. Neurology. 2020;95(3):e320-e331. pii: 10.1212/WNL.0000000000009277 [Epub ahead of print].
  • Akaishi T, Morimoto T, Shibao M, et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett. 2008;444(3):280–285.
  • Ushikubo H, Watanabe S, Tanimoto Y, et al. 3,3ʹ,4ʹ,5,5ʹ-pentahydroxyflavone is a potent inhibitor of amyloid β fibril formation. Neurosci Lett. 2012;513(1):51–56.
  • Zhang C, Griciuc A, Hudry E, et al. Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci Rep. 2018;8(1):1144.
  • Kondo T, Imamura K, Funayama M, et al. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep. 2017;21(8):2304–2312.
  • Lemere CA. Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener. 2013;8:36.
  • Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6(8):916–919.
  • Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci. 2002;5(5):452–457.
  • Panza F, Frisardi V, Imbimbo BP, et al. Anti-β-amyloid immunotherapy for Alzheimer’s disease: focus on bapineuzumab. Curr Alzheimer Res. 2011;8(8):808–817.
  • Tayeb HO, Murray ED, Price BH, et al. Bapineuzumab and solanezumab for Alzheimer’s disease: is the ‘amyloid cascade hypothesis’ still alive? Expert Opin Biol Ther. 2013;13(7):1075–1084.
  • Salloway S, Sperling R, Fox NC, et al., Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 370(4): 322–333. 2014.
  • Imbimbo BP, Ottonello S, Frisardi V, et al. Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev Clin Immunol. 2012;8(2):135–149.
  • Bouter Y, Lopez Noguerola JS, Tucholla P, et al. Aβ targets of the biosimilar antibodies of bapineuzumab, crenezumab, solanezumab in comparison to an antibody against N truncated Aβ in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol. 2015;130(5):713–729.
  • Siemers ER, Friedrich S, Dean RA, et al. Safety and changes in plasma and cerebrospinal fluid amyloid-beta after a single administration of an amyloid-beta monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol. 2010;33(2):67–73.
  • Farlow M, Arnold SE, van Dyck CH, et al., Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 8(4): 261–271. 2012.
  • Doody RS, Thomas RG, Farlow M, et al., Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 370(4): 311–321. 2014.
  • Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378(4):321–330.
  • Schwarz AJ, Sundell KL, Charil A, et al. Magnetic resonance imaging measures of brain atrophy from the EXPEDITION3 trial in mild Alzheimer’s disease. Alzheimers Dement (N Y). 2019;5:328–337.
  • Donohue MC, Sperling RA, Salmon DP, et al. Australian imaging, biomarkers, and lifestyle flagship study of ageing, Alzheimer’s disease neuroimaging initiative, Alzheimer’s disease cooperative study. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71(8):961–970.
  • Sperling RA, Rentz DM, Johnson KA, et al. The A4 Study: stopping AD before symptoms begin? Sci Transl Med. 2014;6(228):228fs13.
  • Jack CR Jr, Knopman DS, Weigand SD, et al., An operational approach to NIA–AA criteria for preclinical Alzheimer’s disease. Ann Neurol. 71(6): 765–775. 2011.
  • Bateman RJ, Benzinger TL, Berry S, et al. The DIAN-TU next generation Alzheimer’s prevention trial: adaptive design and disease progression model. Alzheimers Dement. 2017;13(1):8–19.
  • Washington University School of Medicine in St. Louis. Investigational drugs didn’t slow memory loss, cognitive decline in rare, inherited Alzheimer’s, initial analysis indicates. cited 2020 Aug 5]. Available from: https://medicine.wustl.edu/news/alzheimers-diantu-trial-initial-results
  • Panza F, Solfrizzi V, Imbimbo BP, et al. Efficacy and safety studies of gantenerumab in patients with Alzheimer’s disease. Expert Rev Neurother. 2014;14(9):973–986.
  • Bohrmann B, Baumann K, Benz J, et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis. 2012;28:49–69.
  • Ostrowitzki S, Deptula D, Thurfjell L, et al., Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 69(2): 198–207. 2012.
  • Hoffmann-La Roche Media Release. Roche provides update on gantenerumab development programme. [cited 2020 Aug 5]. Available from: http://www.roche.com/media/store/releases/med-cor-2014-12-19b.htm
  • Ostrowitzki S, Lasser RA, Dorflinger E, et al., A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther. 9(1): 95. 2017.
  • Klein G, Delmar P, Voyle N, et al. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: a PET substudy interim analysis. Alzheimers Res Ther. 2019;11(1):101.
  • Abi-Saab D, Andjelkovic M, Pross N, et al. Update on the safety and tolerability of gantenerumab in the ongoing open-label extension (OLE) of the marguerite RoAD study in patients with prodromal Alzheimer’s disease (AD) after approximately 2 years of study duration. Alzheimers Dement. 2018;14(Suppl):P241.
  • Bussiere T, Weinreb PH, Dunstan RW, et al. Differential in vitro and in vivo binding profiles of BIIB037 and other anti-Aβ clinical antibody candidates. Neurodegener Dis. 2013;11(suppl):1.
  • Ferrero J, Williams L, Stella H, et al. First- in-human, double- blind, placebo controlled, single-dose escalation study of aducanumab (BIIB037) in mild- to-moderate Alzheimer’s disease. Alzheimers Dement. 2016;2:169–176.
  • Sevigny J, Chiao P, Bussière T, et al., The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 537(7618): 50–56. 2016.
  • Budd Haeberlein S, O’Gorman J, Chiao P, et al. Clinical development of aducanumab, an anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J Prev Alzheimers Dis. 2017;4(4):255–263.
  • Biogen/Eisai Halt phase 3 aducanumab trials 21 Mar 2019. [cited 2020 Aug 5]. Available from: https://www.alzforum.org/news/research-news/biogeneisai-halt-phase-3-aducanumab-trials
  • Biogen Q1 Update. [cited 2020 Aug 5]. Available from: http://investors.biogen.com/static-files/1e8f9954-58d4-41cf-a6d7-6626338656c3
  • Cure Alzheimer’s fund. biogen announces intention to file with fda for approval for new Alzheimer’s drug aducanumab – cure Alzheimer’s fund. [online]. [cited 2020 Aug 5]. Available from: https://curealz.org/news-and-events/aducanumab
  • Exposure, exposure, exposure? At CTAD, aducanumab scientists make a case 13 Dec 2019. [Last accessed 2020 Aug 5]. Available from: https://www.alzforum.org/news/conference-coverage/exposure-exposure-exposure-ctad-aducanumab-scientists-make-case
  • Tucker S, Möller C, Tegerstedt K, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis. 2015;43(2):575–588.
  • Söllvander S, Nikitidou E, Gallasch L, et al. The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death. J Neuroinflammation. 2018;15(1):98.
  • Logovinsky V, Satlin A, Lai R, et al. Safety and tolerability of BAN2401–a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res Ther. 2016;8(1):14.
  • Satlin A, Wang J, Logovinsky V, et al. Design of a Bayesian adaptive phase 2 proof-of-concept trial for BAN2401, a putative disease-modifying monoclonal antibody for the treatment of Alzheimer’s disease. Alzheimers Dement (N Y). 2016;2(1):1–12.
  • Wang J, Logovinsky V, Hendrix SB, et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer’s disease trials. J Neurol Neurosurg Psychiatry. 2016;87(9):993–999.
  • Osswald G BioArctic announces positive topline results of BAN2401 phase 2b at 18 months in early Alzheimer’s disease. BioArctic. [cited 2018 Jul 6].
  • Lalonde R, Dumont M, Staufenbiel M, et al. Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav Brain Res. 2005;157(1):91–98.
  • Minkeviciene R, Rheims S, Dobszay MB, et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009;29(11):3453–3462.
  • Shi JQ, Wang BR, Tian YY, et al. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther. 2013;19(11):871–881.
  • Koh MT, Haberman RP, Foti S, et al. Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment. Neuropsychopharmacology. 2010;35(4):1016–1025.
  • Vossel KA, Ranasinghe KG, Beagle AJ, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann Neurol. 2016;80(6):858–870.
  • Cumbo E, Ligori LD. Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behav. 2010;17(4):461–466.
  • Bakker A, Krauss GL, Albert MS, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74(3):467–474.
  • Bakker A, Albert MS, Krauss G, et al. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin. 2015;7:688–698.
  • Musaeus CS, Shafi MM, Santarnecchi E, et al. Levetiracetam alters oscillatory connectivity in Alzheimer’s disease. J Alzheimers Dis. 2017;58(4):1065–1076.
  • Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019;29(10):787–803.
  • Hu J, Geng M, Li J, et al. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci. 2004;95(2):248–255.
  • Wang S, Li J, Xia W, et al. A marine-derived acidic oligosaccharide sugar chain specifically inhibits neuronal cell injury mediated by beta-amyloid-induced astrocyte activation in vitro. Neurol Res. 2007;29(1):96–102.
  • 7th Clinical Trials Conference on Alzheimer’s Disease (CTAD). Abstract OC3; Presented November 20, 2014, Philadelphia, PA, USA.
  • Fits and starts: trial results from the CTAD conference. [cited 2020 Aug 5]. Available from: https://www.alzforum.org/news/conference-coverage/fits-and-starts-trial-results-ctad-conference#Meiyu
  • Green valley announces NMPA approval of oligomannate for mild to moderate Alzheimer’s disease. [cited 2020 Aug 5]. Available from: https://www.greenvalleypharma.com/En/Index/pageView/catid/48/id/28.html
  • Panza F, Solfrizzi V, Imbimbo BP, et al. Amyloid-based immunotherapy for Alzheimer’s disase in the time of prevention trials: the way forward. Expert Rev Clin Immunol. 2014;10(3):405–419.
  • Mills SM, Mallmann J, Santacruz AM, et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev Neurol (Paris). 2013;169(10):737–743.
  • Reiman EM, Langbaum JB, Fleisher AS, et al. Alzheimer’s Prevention initiative: a plan to accelerate the evaluation of presymptomatic treatments. J Alzheimers Dis. 2011;26(Suppl 3):321–329.
  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–292.
  • Struble RG, Ala T, Patrylo PR, et al. Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J Alzheimers Dis. 2010;22(2):393–399.
  • Johnson V, Stewart W, Smith DH. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci. 2010;11(5):361–370.
  • Stein TD, Montenigro PH, Alvarez VE, et al. Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol. 2015;130(1):21–34.
  • Dong Y, Zhang G, Zhang B, et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol. 2009;66(5):620–631.
  • Pluta R, Furmaga-Jabłonska W, Maciejewski R, et al. Brain ischemia activates β- and γ- secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer’s disease. Mol Neurobiol. 2013;47(1):425–434.
  • ElAli A, Thériault P, Préfontaine P, et al. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral β- amyloid brain entry and aggregation. Acta Neuropathol Commun. 2013;1:75.
  • Donovan NJ, Locascio JJ, Marshall GA, et al. Longitudinal association of amyloid β and anxious-depressive symptoms in cognitively normal older adults. Am J Psychiatry. 2018;175(5):530–537.
  • Pomara N, Bruno D, Sarreal AS, et al. Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am J Psychiatry. 2012;169(5):523–530.
  • Bryson JB, Hobbs C, Parsons MJ, et al. Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(1):3871–3882.
  • Coan G, Mitchell CS. An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegener Dis. 2015;15(5):301–312.
  • Reinsfelt B, Westerlind A, Blennow K, et al. Open-heart surgery increases cerebrospinal fluid levels of Alzheimer-associated amyloid β. Acta Anaesthesiol Scand. 2013;57(1):82–88.
  • Hu Y, Shi S, Liu X, et al. Effects of heart bypass surgery on plasma Aβ40 and Aβ42 levels in infants and young children. Medicine (Baltimore). 2016;95(6):e2684.
  • Ooms S, Overeem S, Besse K, et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β- amyloid 42 in healthy middle- aged men: a randomized clinical trial. JAMA Neurol. 2014;71(8):971–977.
  • Lucey BP, Hicks TJ, McLeland JS, et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol. 2018;83(1):197–204.
  • Shokri- Kojori E, Wang GJ, Wiers CE, et al. β-amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA. 2018;115(17):4483–4488.
  • Ju YS, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain. 2017;140(8):2104–2111.
  • Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of amyloid- β peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci. 2018;10:118.
  • Lee HG, Zhu X, Castellani RJ, et al. Amyloid- β in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther. 2007;321(3):823–829.
  • Kokjohn TA, Maarouf CL, Roher AE. Is Alzheimer’s disease amyloidosis the result of a repair mechanism gone astray? Alzheimers Dement. 2012;8(6):574–583.
  • Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9(1):25–34.
  • Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex. 2017;97:143–159.
  • Herrup K. Reimagining Alzheimer’s disease - an age-based hypothesis. J Neurosci. 2010;30(50):16755–16762.
  • Castellani RJ, Lee HG, Zhu X, et al. Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol. 2008;67(6):523–531.
  • Castello MA, Soriano S. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res Rev. 2013;12(1):282–288.
  • Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014;1842(8):1219–1231.
  • Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem. 2016;139(Suppl 2):237–252.
  • Kuhn AJ, Raskatov J. Is the p3 peptide (Aβ17–40, Aβ17–42) relevant to the pathology of Alzheimer’s disease? J Alzheimers Dis. 2020;74(1):43–53.
  • Mormino EC, Papp KV, Rentz DM, et al. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimers Dement. 2017;13(9):1004–1012.
  • Donohue MC, Sperling RA, Petersen R, et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA. 2017;317(22):2305–2316.
  • Jack CR Jr, Wiste HJ, Therneau TM, et al. Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. JAMA. 2019;321(23):2316–2325.
  • Jessen F, Amariglio RE, Buckley RF, et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19(3):271–278.
  • Vos SJ, Xiong C, Visser PJ, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12(10):957–965.
  • Insel PS, Hansson O, Mackin RS, et al. Amyloid pathology in the progression to mild cognitive impairment. Neurobiol Aging. 2018;64:76–84.
  • Sperling RA, Donohue MC, Raman R, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020;77(6):735. [Epub ahead of print].
  • Sperling RA, Mormino EC, Schultz AP, et al. The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann Neurol. 2019;85(2):181–193.
  • Rabin JS, Schultz AP, Hedden T, et al. Interactive associations of vascular risk and β-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the harvard aging brain study. JAMA Neurol. 2018;75(9):1124–1131.
  • Vemuri P, Lesnick TG, Knopman DS, et al. Amyloid, vascular, and resilience pathways associated with cognitive aging. Ann Neurol. 2019;86(6):866–877.
  • Soldan A, Pettigrew C, Fagan AM, et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology. 2019;92(14):e1567–e1579.
  • Cao W, Zheng H. Peripheral immune system in aging and Alzheimer’s disease. Mol Neurodegener. 2018;13(1):51.
  • [No authors listed]. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;85(23):2084.
  • Imbimbo BP, Ippati S, Ceravolo F, et al. Perspective: is therapeutic plasma exchange a viable option for treating Alzheimer’s disease? Alzheimers Dement (N Y). 2020;6(1):e12004.
  • Boada M, López O, Núñez L, et al. Plasma exchange for Alzheimer’s disease management by albumin replacement (AMBAR) trial: study design and progress. Alzheimers Dement. 2019;5:61–69.
  • Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71–76. [Epub ahead of print].
  • Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–516.
  • Stanciu C, Trifan A, Muzica C, et al. Efficacy and safety of alisporivir for the treatment of hepatitis C infection. Expert Opin Pharmacother. 2019;20(4):379–384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.