892
Views
12
CrossRef citations to date
0
Altmetric
Review

New drugs under development for COPD

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 419-431 | Received 20 Jul 2020, Accepted 02 Sep 2020, Published online: 29 Sep 2020

References

  • Caramori G, Ruggeri P, Mumby S, et al., Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets. 23(6): 539–553. 2019.
  • Ghidini E, Marchini G, Capelli AM, et al. Novel pyrrolidine derivatives of budesonide as long acting inhaled corticosteroids for the treatment of pulmonary inflammatory diseases. J Med Chem. 2018;61(11):4757–4773.
  • Hemmerling M, Nilsson S, Edman K, et al. Selective nonsteroidal glucocorticoid receptor modulators for the inhaled treatment of pulmonary diseases. J Med Chem. 2017;60(20):8591–8605.
  • Prothon S, Wahlby Hamren U, Tehler U, et al. Safety, pharmacokinetics and pharmacodynamics of the selective glucocorticoid receptor modulator AZD7594, following inhalation in healthy Japanese volunteers. Drug Des Devel Ther. 2019;13:3845–3853.
  • Matera MG, Page CP, Calzetta L, et al. Pharmacology and therapeutics of bronchodilators revisited. Pharmacol Rev. 2020;72(1):218–252.
  • Aparici M, Gomez-Angelats M, Vilella D, et al. Pharmacological characterization of abediterol, a novel inhaled beta(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther. 2012;342(2):497–509.
  • Beier J, Pujol H, Seoane B, et al. Abediterol, a novel long-acting beta2-agonist: bronchodilation, safety, tolerability and pharmacokinetic results from a single-dose, dose-ranging, active-comparator study in patients with COPD. BMC Pulm Med. 2016;16(1):102.
  • Stellari FF, Sala A, Ruscitti F, et al. CHF6001 inhibits NF-kappaB activation and neutrophilic recruitment in LPS-induced lung inflammation in mice. Front Pharmacol. 2019;10:1337.
  • Mariotti F, Govoni M, Lucci G, et al. Safety, tolerability, and pharmacokinetics of single and repeat ascending doses of CHF6001, a novel inhaled phosphodiesterase-4 inhibitor: two randomized trials in healthy volunteers. Int J Chron Obstruct Pulmon Dis. 2018;13:3399–3410.
  • Singh D, Beeh KM, Colgan B, et al. Effect of the inhaled PDE4 inhibitor CHF6001 on biomarkers of inflammation in COPD. Respir Res. 2019;20(1):180.
  • Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev. 2019;28(154):190095.
  • Page CP. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol. 2014;165(3):152–164.
  • Abbott-Banner KH, Page CP. Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases. Basic Clin Pharmacol Toxicol. 2014;114(5):365–376.
  • Rabe KF, Tenor H, Dent G, et al. Phosphodiesterase isoenzymes modulating inherent tone in human airways: identification and characterization. Am J Physiol. 1993;264:L458–L464.
  • Giembycz MA, Maurice DH. Cyclic nucleotide-based therapeutics for chronic obstructive pulmonary disease. Curr Opin Pharmacol. 2014;16:89–107.
  • Singh D, Martinez FJ, Watz H, et al., A dose-ranging study of the inhaled dual phosphodiesterase 3 and 4 inhibitor ensifentrine in COPD. Respir Res. 21(1): 47. 2020.
  • Rath T, Baker K, Dumont JA, et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2015;35(2):235–254.
  • Scott BM, Sheffield WP. Engineering the serpin alpha1 -antitrypsin: A diversity of goals and techniques. Protein Sci. 2020;29(4):856–871.
  • Lee S, Lee Y, Hong K, et al. Effect of recombinant alpha1-antitrypsin Fc-fused (AAT-Fc)protein on the inhibition of inflammatory cytokine production and streptozotocin-induced diabetes. Mol Med. 2013;19:65–71.
  • Jonigk D, Al-Omari M, Maegel L, et al. Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proc Natl Acad Sci U S A. 2013;110(37):15007–15012.
  • Lebing W, Michelle SP, Ndarathi C, et al. Modification of the manufacturing process for the plasma-derived human alpha1-proteinase inhibitor leading to Prolastin-C. US Resp Dis. 2010;6:22–26.
  • Seyama K, Nukiwa T, Sato T, et al. Safety and pharmacokinetics of alpha-1 MP (Prolastin(I)-C) in Japanese patients with alpha1-antitrypsin (AAT) deficiency. Respir Investig. 2019;57(1):89–96.
  • Pye A, Turner AM. Experimental and investigational drugs for the treatment of alpha-1 antitrypsin deficiency. Expert Opin Investig Drugs. 2019;28(10):891–902.
  • Stolk J, Tov N, Chapman KR, et al. Efficacy and safety of inhaled alpha1-antitrypsin in patients with severe alpha1-antitrypsin deficiency and frequent exacerbations of COPD. Eur Respir J. 2019 Nov 21;54(5):1900673. doi: 10.1183/13993003.00673-2019.
  • von Nussbaum F, Li VM, Allerheiligen S, et al. Freezing the bioactive conformation to boost potency: the identification of BAY 85-8501, a selective and potent inhibitor of human neutrophil elastase for pulmonary diseases. ChemMedChem. 2015;10(7):1163–1173.
  • Watz H, Nagelschmitz J, Kirsten A, et al. Safety and efficacy of the human neutrophil elastase inhibitor BAY 85-8501 for the treatment of non-cystic fibrosis bronchiectasis: A randomized controlled trial. Pulm Pharmacol Ther. 2019;56:86–93.
  • Crim C, Gotfried M, Spangenthal S, et al. A randomized, controlled, repeat-dose study of batefenterol/fluticasone furoate compared with placebo in the treatment of COPD. BMC Pulm Med. 2020;20(1):119.
  • Aparici M, Carcasona C, Ramos I, et al. Pharmacological profile of AZD8871 (LAS191351), a novel inhaled dual M3 receptor antagonist/beta 2-adrenoceptor agonist molecule with long-lasting effects and favorable safety profile. J Pharmacol Exp Ther. 2019;370(1):127–136.
  • Aparici M, Carcasona C, Ramos I, et al. Pharmacological preclinical characterization of LAS190792, a novel inhaled bifunctional muscarinic receptor antagonist/beta2-adrenoceptor agonist (MABA) molecule. Pulm Pharmacol Ther. 2017;46:1–10.
  • Milara J, Contreras S, de Diego A, et al. In vitro anti-inflammatory effects of AZD8999, a novel bifunctional muscarinic acetylcholine receptor antagonist/beta2-adrenoceptor agonist (MABA) compound in neutrophils from COPD patients. PLoS One. 2019;14(1):e0210188.
  • Barnes PJ. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacol Rev. 2016;68(3):788–815.
  • Jones P, Storer RI, Sabnis YA, et al. Design and synthesis of a Pan-Janus Kinase inhibitor clinical candidate (PF-06263276) suitable for inhaled and topical delivery for the treatment of inflammatory diseases of the lungs and skin. J Med Chem. 2017;60(2):767–786.
  • Bach J, Eastwood P, Gonzalez J, et al. Identification of 2-imidazopyridine and 2-aminopyridone purinones as potent pan-janus kinase (JAK) inhibitors for the inhaled treatment of respiratory diseases. J Med Chem. 2019;62(20):9045–9060.
  • Freitas R, Cordeiro NM, Carvalho PR, et al. Discovery of naphthyl-N-acylhydrazone p38alpha MAPK inhibitors with in vivo anti-inflammatory and anti-TNF-alpha activity. Chem Biol Drug Des. 2018;91(2):391–397.
  • Cordeiro NM, Freitas R, Fraga CAM, et al. New 2-amino-pyridinyl-N-acylhydrazones: synthesis and identification of their mechanism of anti-inflammatory action. Biomed Pharmacother. 2020;123:109739.
  • Higham A, Karur P, Jackson N, et al. Differential anti-inflammatory effects of budesonide and a p38 MAPK inhibitor AZD7624 on COPD pulmonary cells. Int J Chron Obstruct Pulmon Dis. 2018;13:1279–1288.
  • Bewley MA, Belchamber KB, Chana KK, et al. Differential effects of p38, MAPK, PI3K or rho kinase inhibitors on bacterial phagocytosis and efferocytosis by macrophages in COPD. PLoS One. 2016;11(9):e0163139.
  • Charron CE, Russell P, Ito K, et al. RV568, a narrow-spectrum kinase inhibitor with p38 MAPK-alpha and -gamma selectivity, suppresses COPD inflammation. Eur Respir J. 2017;50(4):1700188.
  • Knobloch J, Jungck D, Kronsbein J, et al. LABAs and p38MAPK inhibitors reverse the corticosteroid-insensitivity of IL-8 in airway smooth muscle cells of COPD. J Clin Med. 2019 Nov 22;8(12):2058. doi: 10.3390/jcm8122058. PMID:31766770.
  • To Y, Ito K, Kizawa Y, et al. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(7):897–904.
  • Hsu AC, Starkey MR, Hanish I, et al. Targeting PI3K-p110alpha suppresses influenza virus infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1012–1023.
  • Gupta V, Khan A, Higham A, et al. The effect of phosphatidylinositol-3 kinase inhibition on matrix metalloproteinase-9 and reactive oxygen species release from chronic obstructive pulmonary disease neutrophils. Int Immunopharmacol. 2016;35:155–162.
  • Wilson R, Jarvis E, Montembault M, et al. Safety, tolerability, and pharmacokinetics of single and repeat doses of nemiralisib administered via the ellipta dry powder inhaler to healthy subjects. Clin Ther. 2018;40(8):1410–1417.
  • Dasgupta A, Kjarsgaard M, Capaldi D, et al. A pilot randomised clinical trial of mepolizumab in COPD with eosinophilic bronchitis. Eur Respir J. 2017;49(3):1602486.
  • Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613–1629.
  • Brightling CE, Bleecker ER, Panettieri RA Jr., et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2(11):891–901.
  • Criner GJ, Celli BR, Singh D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir Med. 2020;8(2):158–170.
  • Xia J, Zhao J, Shang J, et al. Increased IL-33 expression in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;308(7):L619–27.
  • Varricchi G, Pecoraro A, Marone G, et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front Immunol. 2018;9:1595.
  • Haw TJ, Starkey MR, Nair PM, et al. A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease. Mucosal Immunol. 2016;9(4):859–872.
  • Starkey MR, Plank MW, Casolari P, et al. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur Respir J. 2019;54(1):1800174.
  • Jones B, Donovan C, Liu G, et al. Animal models of COPD: what do they tell us? Respirology. 2017;22(1):21–32.
  • Caramori G, Adcock IM, Di Stefano A, et al. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:397–412.
  • Nucera F, Bello FL, Shen SS, et al. Role of typical chemokines and chemokine receptors pathways in the pathogenesis of copd. Curr Med Chem. 2020 Aug 19. doi: 10.2174/0929867327999200819145327. Online ahead of print.
  • Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541–1558.
  • Miller BE, Mistry S, Smart K, et al. The pharmacokinetics and pharmacodynamics of danirixin (GSK1325756)–a selective CXCR2 antagonist –in healthy adult subjects. BMC Pharmacol Toxicol. 2015;16:18.
  • Lazaar AL, Miller BE, Tabberer M, et al. Effect of the CXCR2 antagonist danirixin on symptoms and health status in COPD. Eur Respir J. 2018;52(4):1801020.
  • Lazaar AL, Miller BE, Donald AC, et al. CXCR2 antagonist for patients with chronic obstructive pulmonary disease with chronic mucus hypersecretion: a phase 2b trial. Respir Res. 2020;21:149–156.
  • Parnham MJ, Nijkamp FP, Rossi AG. Nijkamp and Parnham’s principles of immunopharmacology. 4th ed. New York: Springer; 2019.
  • Greten FR, Arkan MC, Bollrath J, et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130(5):918–931.
  • DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.
  • Cipollina C, Di Vincenzo S, Gerbino S, et al. Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. Biochim Biophys Acta. 2014;1840(7):2299–2309.
  • Cipollina C, Di Vincenzo S, Siena L, et al. 17-oxo-DHA displays additive anti-inflammatory effects with fluticasone propionate and inhibits the NLRP3 inflammasome. Sci Rep. 2016;6:37625.
  • Barnes PJ. Pulmonary diseases and ageing. Subcell Biochem. 2019;91:45–74.
  • Wissler Gerdes EO, Zhu Y, Tchkonia T, et al., Discovery, development, and future application of senolytics: theories and predictions. Febs J. 287(12): 2418–2427. 2020.
  • Houssaini A, Breau M, Kebe K, et al. mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight. 2018;3(3):e93203. doi: 10.1172/jci.insight.93203.
  • Yonchuk JG, Foley JP, Bolognese BJ, et al. Characterization of the potent, selective Nrf2 activator, 3-(Pyridin-3-Ylsulfonyl)-5-(Trifluoromethyl)-2H-chromen-2-one, in cellular and in vivo models of pulmonary oxidative stress. J Pharmacol Exp Ther. 2017;363(1):114–125.
  • Wise RA, Holbrook JT, Criner G, et al. Lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS One. 2016;11(11):e0163716.
  • Gottlieb J. Community-acquired respiratory viruses. Semin Respir Crit Care Med. 2018;39(2):213–218.
  • Dumont EF, Oliver AJ, Ioannou C, et al. A novel inhaled dry-powder formulation of ribavirin allows for efficient lung delivery in healthy participants and those with chronic obstructive pulmonary disease in a phase 1 study. Antimicrob Agents Chemother. 2020 Apr 21;64(5):e02267-19. doi: 10.1128/AAC.02267-19.
  • Liu G, Cooley MA, Jarnicki AG, et al. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight. 2016 Jun 16;1(9):e86380. doi: 10.1172/jci.insight.86380.
  • Lam M, Royce SG, Donovan C, et al. Serelaxin elicits bronchodilation and enhances beta-adrenoceptor-mediated airway relaxation. Front Pharmacol. 2016;7:406.
  • Lam M, Royce SG, Samuel CS, et al. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther. 2018;187:61–70.
  • Coppolino I, Ruggeri P, Nucera F, et al. Role of stem cells in the pathogenesis of chronic obstructive pulmonary disease and pulmonary emphysema. COPD. 2018;15(5):536–556.
  • Michaeloudes C, Bhavsar PK, Mumby S, et al. Role of metabolic reprogramming in pulmonary innate immunity and its impact on lung diseases. J Innate Immun. 2020;12(1):31–46.
  • Zasłona Z, O’Neill LAJ. Cytokine-like roles for metabolites in immunity. Mol Cell. 2020;78(5):814–823.
  • Kornberg MD, Bhargava P, Kim PM, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360(6387):449–453.
  • Li J, Li S, Guo J, et al. Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia. J Med Chem. 2018;61(9):4155–4164.
  • Jarnicki AG, Schilter H, Liu G, et al. The inhibitor of semicarbazide-sensitive amine oxidase, PXS-4728A, ameliorates key features of chronic obstructive pulmonary disease in a mouse model. Br J Pharmacol. 2016;173(22):3161–3175.
  • Beckett EL, Stevens RL, Jarnicki AG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013;131(3):752–762.
  • Leung JM, Tiew PY, Mac Aogain M, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017;22(4):634–650.
  • Starkey MR, Jarnicki AG, Essilfie AT, et al. Murine models of infectious exacerbations of airway inflammation. Curr Opin Pharmacol. 2013;13(3):337–344.
  • Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727–737.
  • Kim RY, Pinkerton JW, Gibson PG, et al. Inflammasomes in COPD and neutrophilic asthma. Thorax. 2015;70(12):1199–1201.
  • Donovan C, Liu G, Shen S, et al. The role of microbiome and NLRP3 inflammasome in the gut and the lung. J Leuko Biol. 2020;108:925–935.
  • Kedzierski L, Tate MD, Hsu AC, et al. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. Elife. 2017 Feb 14;6:e20444. doi: 10.7554/eLife.20444.
  • Hansbro PM, Hamilton MJ, Fricker M, et al. Importance of mast cell Prss31/transmembrane tryptase/tryptase-gamma in lung function and experimental chronic obstructive pulmonary disease and colitis. J Biol Chem. 2014;289(26):18214–18227.
  • Schanin J, Korver W, Gebremeskel S, et al. Siglec-8 antibody suppresses non-allergic inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol. 2020 Aug 19. doi: 10.1038/s41385-020-00336-9. Online ahead of print. PMID:32814824.
  • Hsu AC, Dua K, Starkey MR, et al. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight. 2017;2(7):e90443.
  • Tay HL, Kaiko GE, Plank M, et al. Antagonism of miR-328 increases the antimicrobial function of macrophages and neutrophils and rapid clearance of non-typeable haemophilus influenzae (NTHi) from infected lung. PLoS Pathog. 2015;11(4):e1004549.
  • Conickx G, Mestdagh P, Avila Cobos F, et al. MicroRNA profiling reveals a role for MicroRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;195(1):43–56.
  • Haw TJ, Starkey MR, Pavlidis S, et al. Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2018;314(2):L298–L317.
  • Simpson JL, McDonald VM, Baines KJ, et al. Influence of age, past smoking, and disease severity on TLR2, neutrophilic inflammation, and MMP-9 levels in COPD. Mediators Inflamm. 2013;2013:462934.
  • Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 2019;7(10):907–920.
  • Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63.
  • Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, severity and mortality associated with COPD and Smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS One. 2020;15(5):e0233147.
  • Johansen MD, Irving AT, Montagutelli X, et al. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol. 2020 Aug 20:1-15. doi: 10.1038/s41385-020-00340-z. Online ahead of print. PMID:32820248

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.