188
Views
3
CrossRef citations to date
0
Altmetric
Review

Emerging drugs for the treatment of Waldenström macroglobulinemia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 433-444 | Received 29 Jul 2020, Accepted 09 Sep 2020, Published online: 21 Sep 2020

References

  • Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003 Apr;30(2):110–115.
  • Teras LR, DeSantis CE, Cerhan JR, et al. US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016 Sept 12;66(6):443–459
  • McMaster ML. Familial Waldenstrom’s macroglobulinemia. Semin Oncol. 2003 Apr;30(2):146–152.
  • Treon SP, Hunter ZR, Aggarwal A, et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006 Mar;17(3):488–494.
  • Kyle RA, Benson JT, Larson DR, et al. Progression in smoldering Waldenstrom macroglobulinemia: long-term results. Blood. 2012 May 10;119(19):4462–4466.
  • Pophali PA, Bartley A, Kapoor P, et al. Prevalence and survival of smouldering Waldenstrom macroglobulinaemia in the United States. Br J Haematol. 2019 Mar;184(6):1014–1017.
  • Dhodapkar MV, Hoering A, Gertz MA, et al. Long-term survival in Waldenstrom macroglobulinemia: 10-year follow-up of Southwest Oncology Group-directed intergroup trial S9003. Blood. 2009 Jan 22;113(4):793–796.
  • Kyle RA, Treon SP, Alexanian R, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003 Apr;30(2):116–120.
  • Leblond V, Kastritis E, Advani R, et al. Treatment recommendations from the Eighth International Workshop on Waldenstrom’s Macroglobulinemia. Blood. 2016 Sept 8;128(10):1321–1328.
  • Bustoros M, Sklavenitis-Pistofidis R, Kapoor P, et al. Progression risk stratification of asymptomatic waldenstrom macroglobulinemia. J Clin Oncol. 2019 June 1;37(16):1403–1411.
  • Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009 Apr 30;113(18):4163–4170.
  • Kastritis E, Morel P, Duhamel A, et al. A revised international prognostic score system for Waldenstrom’s macroglobulinemia. Leukemia. 2019 Nov;33(11):2654–2661.
  • Nguyen-Khac F, Lambert J, Chapiro E, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom’s macroglobulinemia. Haematologica. 2013 Apr;98(4):649–654.
  • Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in waldenstrom’s macroglobulinemia. Clin Cancer Res. 2017 Oct 15;23(20):6325–6335.
  • Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012 Aug 30;367(9):826–833.
  • Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013 Mar 28;121(13):2522–2528.
  • Abeykoon JP, Paludo J, King RL, et al. MYD88 mutation status does not impact overall survival in Waldenstrom macroglobulinemia. Am J Hematol. 2018 Feb;93(2):187–194.
  • Ntanasis-Stathopoulos I, Bagratuni T, Gavriatopoulou M, et al. Cell-free DNA analysis for the detection of MYD88 and CXCR4 mutations in IgM monoclonal gammopathies; an update with clinicopathological correlations. Am J Hematol. 2020 Apr 3;95. DOI:10.1002/ajh.25802
  • Bagratuni T, Ntanasis-Stathopoulos I, Gavriatopoulou M, et al. Detection of MYD88 and CXCR4 mutations in cell-free DNA of patients with IgM monoclonal gammopathies. Leukemia. 2018 Dec;32(12):2617–2625.
  • Treon SP, Xu L, Hunter Z. MYD88 Mutations and Response to Ibrutinib in Waldenstrom’s Macroglobulinemia. N Engl J Med. 2015 Aug 6;373(6):584–586.
  • Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014 Mar 13;123(11):1637–1646.
  • Castillo JJ, Moreno DF, Arbelaez MI, et al. CXCR4 mutations affect presentation and outcomes in patients with Waldenstrom macroglobulinemia: a systematic review. Expert Rev Hematol. 2019 Oct;12(10):873–881.
  • Castillo JJ, Xu L, Gustine JN, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenström macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019 July 3;187:356–363.
  • Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014 May 1;123(18):2791–2796.
  • Xu L, Hunter ZR, Tsakmaklis N, et al. Clonal architecture of CXCR4 WHIM-like mutations in Waldenstrom Macroglobulinaemia. Br J Haematol. 2016 Mar;172(5):735–744.
  • Stone MJ. Waldenstrom’s macroglobulinemia: hyperviscosity syndrome and cryoglobulinemia. Clin Lymphoma Myeloma. 2009 Mar;9(1):97–99.
  • Buske C, Sadullah S, Kastritis E, et al. Treatment and outcome patterns in European patients with Waldenstrom’s macroglobulinaemia: a large, observational, retrospective chart review. Lancet Haematol. 2018 July;5(7):e299–e309.
  • Dimopoulos MA, Zervas C, Zomas A, et al. Treatment of Waldenstrom’s macroglobulinemia with rituximab. J Clin Oncol. 2002 May 1;20(9):2327–2333.
  • Ghobrial IM, Fonseca R, Greipp PR, et al. Initial immunoglobulin M ‘flare’ after rituximab therapy in patients diagnosed with Waldenstrom macroglobulinemia: an Eastern Cooperative Oncology Group Study. Cancer. 2004 Dec 1;101(11):2593–2598.
  • Kastritis E, Gavriatopoulou M, Kyrtsonis MC, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenstrom macroglobulinemia: final analysis of a phase 2 study. Blood. 2015 Sept 10;126(11):1392–1394.
  • Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013 Apr 6;381(9873):1203–1210.
  • Laribi K, Poulain S, Willems L, et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br J Haematol. 2018 Dec 12; 186(1):146–149
  • Tedeschi A, Picardi P, Ferrero S, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenstrom macroglobulinemia. Leuk Lymphoma. 2015;14:1–6.
  • Treon SP, Hanzis C, Tripsas C, et al. Bendamustine therapy in patients with relapsed or refractory waldenström’s macroglobulinemia. Clin LympMyeloma Leuk. 2011 Feb;11(1):133–135.
  • Treon SP, Branagan AR, Ioakimidis L, et al. Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia. Blood. 2009 Apr 16;113(16):3673–3678.
  • Tedeschi A, Benevolo G, Varettoni M, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2012 Jan 15;118(2):434–443.
  • Souchet L, Levy V, Ouzegdouh M, et al. Efficacy and long-term toxicity of the rituximab-fludarabine-cyclophosphamide combination therapy in Waldenstrom’s macroglobulinemia. Am J Hematol. 2016 Aug;91(8):782–786.
  • Gavriatopoulou M, Kastritis E, Kyrtsonis MC, et al. Phase 2 study of ofatumumab, fludarabine and cyclophosphamide in relapsed/refractory Waldenstrom’s macroglobulinemia. Leuk Lymphoma. 2017 June;58(6):1506–1508.
  • Dimopoulos MA, Garcia-Sanz R, Gavriatopoulou M, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013 Nov 7;122(19):3276–3282.
  • Ghobrial IM, Xie W, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenstrom Macroglobulinemia. Am J Hematol. 2010 Sept;85(9):670–674.
  • Ghobrial IM, Hong F, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010 Mar 10;28(8):1422–1428.
  • Gavriatopoulou M, Garcia-Sanz R, Kastritis E, et al. BDR in newly diagnosed patients with WM: final analysis of a phase 2 study after a minimum follow-up of 6 years. Blood. 2017 Jan 26;129(4):456–459.
  • Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol. 2009 Aug 10;27(23):3830–3835.
  • Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015 Apr 9;372(15):1430–1440.
  • Treon S, Meid K, Gustine J, et al. Long-term follow-up of previously treated patients who received ibrutinib for symptomatic waldenstrom’s macroglobulinemia: update of pivotal clinical trial. Blood. 2017;130:2776.
  • Buske C, Tedeschi A, Trotman J, et al. Ibrutinib treatment in waldenström’s macroglobulinemia: follow-up efficacy and safety from the iNNOVATETM study. Blood. 2018;132:149.
  • Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 trial of ibrutinib plus rituximab in waldenstrom’s macroglobulinemia. N Engl J Med. 2018 June 21;378(25):2399–2410.
  • Dimopoulos MA, Trotman J, Tedeschi A, et al. Ibrutinib for patients with rituximab-refractory Waldenstrom’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017 Feb;18(2):241–250.
  • Castillo JJ, Gustine JN, Meid K, et al. Ibrutinib withdrawal symptoms in patients with Waldenstrom macroglobulinemia. Haematologica. 2018 July;103(7):e307–e310.
  • Castillo JJ, Gustine JN, Meid K, et al. Impact of ibrutinib dose intensity on patient outcomes in previously treated Waldenstrom macroglobulinemia. Haematologica. 2018 Oct;103(10):e466–e468.
  • de Jong J, Skee D, Murphy J, et al. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants. Pharmacol Res Perspect. 2015 Aug;3(4):e00156.
  • Brown JR, Moslehi J, O’Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017 Oct;102(10):1796–1805.
  • de Weerdt I, Koopmans SM, Kater AP, et al. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica. 2017 Oct;102(10):1629–1639.
  • Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014 June 12;370(24):2286–2294.
  • Sideras P, Muller S, Shiels H, et al. Genomic organization of mouse and human Bruton’s agammaglobulinemia tyrosine kinase (Btk) loci. J Immunol. 1994 Dec 15;153(12):5607–5617.
  • Stevenson FK, Krysov S, Davies AJ, et al. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011 Oct 20;118(16):4313–4320.
  • Satterthwaite AB, Witte ON. The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev. 2000 June;175:120–127.
  • de Weers M, Verschuren MC, Kraakman ME, et al. The Bruton’s tyrosine kinase gene is expressed throughout B cell differentiation, from early precursor B cell stages preceding immunoglobulin gene rearrangement up to mature B cell stages. Eur J Immunol. 1993 Dec;23(12):3109–3114.
  • de Gorter DJ, Beuling EA, Kersseboom R, et al. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007 Jan;26(1):93–104.
  • Watters TM, Kenny EF, O’Neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol. 2007 Aug–Sept;85(6):411–419.
  • Leleu X, Eeckhoute J, Jia X, et al. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood. 2008 May 15;111(10):5068–5077.
  • Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010 June 17;465(7300):885–890.
  • Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood. 2013 Aug 15;122(7):1222–1232.
  • Chen JG, Liu X, Munshi M, et al. BTK(Cys481Ser) drives ibrutinib resistance via ERK1/2 and protects BTK(wild-type) MYD88-mutated cells by a paracrine mechanism. Blood. 2018 May 3;131(18):2047–2059.
  • Munshi M, Liu X, Chen JG, et al. SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer J. 2020 Jan 31;10(1):12.
  • Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resistance in Waldenstrom macroglobulinemia. Blood. 2017 May 4;129(18):2519–2525.
  • Wu J, Liu C, Tsui ST, et al. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol. 2016 Sept 2;9(1):80.
  • Trotman J, Opat S, Marlton P, et al. BRUTON’S TYROSINE KINASE (BTK) INHIBITOR BGB-3111 DEMONSTRATES HIGH VERY GOOD PARTIAL RESPONSE (VGPR) RATE IN PATIENTS WITH WALDENSTRÖM MACROGLOBULINEMIA (WM). Hematol Oncol. 2017;35:70–71.
  • Tam CS, LeBlond V, Novotny W, et al. A head-to-head Phase III study comparing zanubrutinib versus ibrutinib in patients with Waldenstrom macroglobulinemia. Future Oncol. 2018 Sept;14(22):2229–2237.
  • BeiGene Announces Results of Phase 3 ASPEN Trial of Zanubrutinib Compared to Ibrutinib for the Treatment of Patients with Waldenström’s Macroglobulinemia [Internet]. Press release; 2019; Dec 16. Available from: http://ir.beigene.com/news-releases/news-release-details/beigene-announces-results-phase-3-aspen-trial-zanubrutinib/
  • Barf T, Covey T, Izumi R, et al. Acalabrutinib (ACP-196): a covalent bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017 Nov;363(2):240–252.
  • Owen R, McCarthy CA, Rule S, et al. Acalabrutinib in patients (pts) with Waldenström macroglobulinemia (WM). J clin oncol. 2018;36:15.
  • Owen RG, McCarthy H, Rule S, et al. Acalabrutinib monotherapy in patients with Waldenstrom macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020 Feb;7(2):e112–e121.
  • Allan JN, Pinilla-Ibarz J, Gladstone DE, et al. Ongoing results of a phase 1B/2 dose-escalation and cohort-expansion study of the selective, noncovalent, reversible Bruton’s tyrosine kinase inhibitor, vecabrutinib, in B-cell malignancies. Blood. 2019;134:3041.
  • Neuman L, Ward R, Arnold D, et al. First-in-human phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of the noncovalent bruton tyrosine kinase (BTK) inhibitor SNS-062 in healthy subjects. Blood. 2016;128:2032.
  • Ward R, Arnold D, et al. A phase 1a study to investigate the safety, pharmacokinetics, and pharmacodynamics of the non covalent Bruton’s Tyrosine Kinase inhibitor SNS-062 in healthy subjects: preliminary results. Presented at the 2nd International Conference on New Concepts in B-Cell Malignancies; San Diego, CA; 2016.
  • Munakata W, Sekiguchi N, Shinya R, et al. Phase 2 study of tirabrutinib (ONO/GS-4059), a second-generation bruton’s tyrosine kinase inhibitor, monotherapy in patients with treatment-naïve or relapsed/refractory waldenström macroglobulinemia. Blood. 2019;134:345.
  • Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014 June 26;123(26):4120–4131.
  • Yang G, Wang J, Munshi M, et al. A novel HCK and BTK dual inhibitor kin-8194 shows superior activity over ibrutinib and overcomes BTKC481S mediated ibrutinib resistance in vitro and in vivo in MYD88 mutated B-cell lymphomas. Blood. 2019;134:394.
  • Kuiatse I, Baladandayuthapani V, Lin HY, et al. Targeting the spleen tyrosine kinase with fostamatinib as a strategy against waldenstrom macroglobulinemia. Clin Cancer Res. 2015 June 1;21(11):2538–2545.
  • Castillo JJ, Meid K, Gustine JN, et al. Prospective clinical trial of ixazomib, dexamethasone, and rituximab as primary therapy in waldenstrom macroglobulinemia. Clin Cancer Res. 2018 July 15;24(14):3247–3252.
  • Treon SP, Tripsas CK, Meid K, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenstrom’s macroglobulinemia. Blood. 2014 July 24;124(4):503–510.
  • Meid K, Dubeau T, Sevems P, et al. Long term follow-up of a prospective clinical trial of carfilzomib, rituximab and dexamethasone (CaRD) in Waldenstrom’s macroglobulinemia. Blood. 2017;124:503–510.
  • Nichols GL, Stein CA. Modulation of the activity of Bcl-2 in Waldenstrom’s macroglobulinemia using antisense oligonucleotides. Semin Oncol. 2003 Apr;30(2):297–299.
  • Castillo J, Gustine J, Meid K, et al. Multicenter prospective Phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinaemia. Blood. 2018;132:2888.
  • Yang G, Liu X, Zhou Y, et al. PI3K/AKT pathway is activated by MYD88 L265P and use Of PI3K-delta inhibitors induces robust tumor cell killing in Waldenstrom’s macroglobulinemia. Blood. 2013;122:4255.
  • Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195–203.
  • Castillo JJ, Gustine JN, Meid K, et al. Idelalisib in Waldenstrom macroglobulinemia: high incidence of hepatotoxicity. Leuk Lymphoma. 2017 Apr;58(4):1002–1004.
  • Tomowiak C, editor Open label non-randomized phase II study exploring “chemo-free” treatment association with idelalisib+ obinutuzumab in patients with relpased/refractory (R/R) Waldenstrom’s macroglobulinemia. Orlando: ASH;2019
  • Treon SP, Meid K, Tripsas C, et al. Prospective, multicenter clinical trial of everolimus as primary therapy in waldenstrom macroglobulinemia (WMCTG 09-214). Clin Cancer Res. 2017 May 15;23(10):2400–2404.
  • Ghobrial IM, Redd R, Armand P, et al. Phase I/II trial of everolimus in combination with bortezomib and rituximab (RVR) in relapsed/refractory Waldenstrom macroglobulinemia. Leukemia. 2015 Dec;29(12):2338–2346.
  • Treon SP, Soumerai JD, Branagan AR, et al. Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood. 2008 Dec 1;112(12):4452–4457.
  • Treon SP, Soumerai JD, Branagan AR, et al. Lenalidomide and rituximab in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2009 Jan 1;15(1):355–360.
  • Fouquet G, Guidez S, Petillon MO, et al. Lenalidomide is safe and active in Waldenstrom macroglobulinemia. Am J Hematol. 2015 Nov;90(11):1055–1059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.