526
Views
3
CrossRef citations to date
0
Altmetric
Review

Emerging drugs for the treatment of myelofibrosis: phase II & III clinical trials

&
Pages 351-362 | Received 20 Sep 2021, Accepted 03 Dec 2021, Published online: 12 Dec 2021

References

  • Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2018 Dec;93(12):1551–1560.
  • O’Sullivan JM, Harrison CN. Myelofibrosis: clinicopathologic features, prognosis, and management. Clin Adv Hematol Oncol. 2018 Feb;16(2):121–131.
  • Sokol K, Tremblay D, Bhalla S, et al. Implications of mutation profiling in myeloid malignancies-PART 2: myeloproliferative neoplasms and other myeloid malignancies. Oncology (Williston Park). 2018 May 15;32(5):e45–e51.
  • Lataillade JJ, Pierre-Louis O, Hasselbalch HC, et al. Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood. 2008 Oct 15;112(8):3026–3035.
  • Deeg HJ, Bredeson C, Farnia S, et al. Hematopoietic cell transplantation as curative therapy for patients with myelofibrosis: long-term success in all age groups. Biol Blood Marrow Transplant. 2015 Nov;21(11):1883–1887.
  • United States Food and Drug Administration. JAKAFI (Ruxolitinib) Label. 2011.
  • INREBIC (fedratinib) Label [Internet]. 2019. [cited 2021 Aug 1]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212327s000lbl.pdf
  • Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008 Apr;13(4):311–320.
  • Levine RL, Pardanani A, Tefferi A, et al. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007 Sep;7(9):673–683.
  • Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012 Mar 1;366(9):799–807.
  • Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015 Aug;1(5):643–651.
  • Mylonas E, Yoshida K, Frick M, et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun. 2020 Jan 7;11(1):73.
  • Kroger N, Giorgino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015May21; 125(21)3347–3350. quiz 3364
  • Gowin K, Ballen K, Ahn KW, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020 May 12;4(9):1965–1973.
  • Kroger NM, Deeg JH, Olavarria E, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015 Nov;29(11):2126–2133.
  • McLornan DP, Hernandez-Boluda JC, Czerw T, et al. Allogeneic haematopoietic cell transplantation for myelofibrosis: proposed definitions and management strategies for graft failure, poor graft function and relapse: best practice recommendations of the EBMT chronic malignancies working party. Leukemia. 2021 Sep;35(9):2445–2459.
  • McLornan D, Szydlo R, Koster L, et al. Myeloablative and reduced-intensity conditioned allogeneic hematopoietic stem cell transplantation in myelofibrosis: a retrospective study by the chronic malignancies working party of the European Society For Blood And Marrow Transplantation. Biol Blood Marrow Transplant. 2019 Nov;25(11):2167–2171.
  • Rondelli D, Goldberg JD, Isola L, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014 Aug 14;124(7):1183–1191.
  • Gupta V, Kennedy JA, Capo-Chichi JM, et al. Genetic factors rather than blast reduction determine outcomes of allogeneic HCT in BCR-ABL-negative MPN in blast phase. Blood Adv. 2020 Nov10;4(21):5562–5573.
  • Gagelmann N, Bogdanov R, Stolzel F, et al. Long-term survival benefit after allogeneic hematopoietic cell transplantation in chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2020 Oct 8. https://pubmed.ncbi.nlm.nih.gov/30625392/
  • Keyzner A, Han S, Shapiro S, et al. Outcome of allogeneic hematopoietic stem cell transplantation for patients with chronic and advanced phase myelofibrosis. Biol Blood Marrow Transplant. 2016 Dec;22(12):2180–2186.
  • Raj K, Eikema DJ, McLornan DP, et al. Family mismatched allogeneic stem cell transplantation for myelofibrosis: report from the chronic malignancies working party of European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2019 Mar;25(3):522–528.
  • Ibrahim U, Petrone GEM, Mascarenhas J, et al. Peritransplantation use of ruxolitinib in myelofibrosis. Biol Blood Marrow Transplant. 2020 Dec;26(12):2177–2180.
  • Gupta V, Kosiorek HE, Mead A, et al. Ruxolitinib therapy followed by reduced-intensity conditioning for hematopoietic cell transplantation for myelofibrosis: myeloproliferative disorders research consortium 114 study. Biol Blood Marrow Transplant. 2019 Feb;25(2):256–264.
  • Gagelmann N, Ditschkowski M, Bogdanov R, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019 May 16;133(20):2233–2242.
  • Devlin R, Gupta V. Myelofibrosis: to transplant or not to transplant? Hematol Am Soc Hematol Educ Program. 2016 Dec 2;2016(1):543–551.
  • FDA approves first drug to treat a rare bone marrow disease [Internet]. 2011; [cited 2011 Nov 16]. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm280102.htm
  • Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis [Clinical trial, phase III comparative study multicenter study randomized controlled trial research support, non-u.s. gov’t]. N Engl J Med. 2012 Mar 1;366(9):787–798.
  • Verstovsek S, Mesa RA, Gotlib J, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017 Feb 22;10(1):55.
  • Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016 Aug;30(8):1701–1707.
  • Gupta V, Griesshammer M, Martino B, et al. Analysis of predictors of response to ruxolitinib in patients with myelofibrosis in the phase 3b expanded-access JUMP study. Leuk Lymphoma. 2021 Apr;62(4):918–926.
  • Patel KP, Newberry KJ, Luthra R, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015 Aug 6;126(6):790–797.
  • Passamonti F, Maffioli M, Cervantes F, et al. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood. 2014 Mar 20;123(12):1833–1835.
  • Mesa RA, Verstovsek S, Gupta V, et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin Lymphoma Myeloma Leuk. 2015 Apr;15(4):214–221 e1.
  • Cervantes F, Ross DM, Radinoff A, et al. Efficacy and safety of a novel dosing strategy for ruxolitinib in the treatment of patients with myelofibrosis and anemia: the REALISE phase 2 study. Leukemia. 2021;35: 3455–3465 .
  • Naymagon L, Mascarenhas J. Myelofibrosis-related anemia: current and emerging therapeutic strategies. Hemasphere. 2017 Dec;1(1):e1.
  • Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc. 2011 Dec;86(12):1188–1191.
  • Zhou T, Georgeon S, Moser R, et al. Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia. 2014 Feb;28(2):404–407.
  • Shi JG, Chen X, McGee RF, et al. The pharmacokinetics, pharmacodynamics, and safety of orally dosed INCB018424 phosphate in healthy volunteers. J Clin Pharmacol. 2011 Dec;51(12):1644–1654.
  • Harrison CN, Schaap N, Vannucchi AM, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (Jakarta-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017 Jul;4(7):e317–e324.
  • Harrison CN, Schaap N, Vannucchi AM, et al. Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: an updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure. Am J Hematol. 2020 Jun;95(6):594–603.
  • Harrison CN, Mesa RA, Jamieson C, et al. Case series of potential Wernicke’s encephalopathy in patients treated with fedratinib. Blood. 2017;130(Supplement 1):4197.
  • Mascarenhas J, Mehra M, He J, et al. Patient characteristics and outcomes after ruxolitinib discontinuation in patients with myelofibrosis. J Med Econ. 2020 Jul;23(7):721–727.
  • Kuykendall AT, Shah S, Talati C, et al. Between a rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after ruxolitinib discontinuation. Ann Hematol. 2018 Mar;97(3):435–441.
  • Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017 Aug 31;130(9):1125–1131.
  • Palandri F, Breccia M, Bonifacio M, et al. Life after ruxolitinib: reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer. 2020 Mar 15;126(6):1243–1252.
  • Masarova L, Alhuraiji A, Bose P, et al. Significance of thrombocytopenia in patients with primary and postessential thrombocythemia/polycythemia vera myelofibrosis. Eur J Haematol. 2018 Mar;100(3):257–263.
  • Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010 Mar 4;115(9):1703–1708.
  • Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011 Feb 1;29(4):392–397.
  • Tefferi A, Guglielmelli P, Nicolosi M, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018 Jul;32(7):1631–1642.
  • Vannucchi AM, Guglielmelli P, Lasho TL, et al. MIPSS70: mutation-enhanced prognostic system for transplant age patients with primary myelofibrosis. Blood. 2017;130(Suppl 1):200.
  • Mesa RA, Miller CB, Thyne M, et al. Differences in treatment goals and perception of symptom burden between patients with myeloproliferative neoplasms (MPNs) and hematologists/oncologists in the United States: findings from the MPN Landmark survey. Cancer. 2017 Feb 1;123(3):449–458.
  • Tefferi A, Vaidya R, Caramazza D, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011 Apr 1;29(10):1356–1363.
  • Rampal R, Al-Shahrour F, Abdel-Wahab O, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014 May 29;123(22):e123–33.
  • Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014 Apr 3;123(14):2220–2228.
  • Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013 Sep;27(9):1861–1869.
  • Fisher DAC, Miner CA, Engle EK, et al. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFkappaB signaling. Leukemia. 2019 Aug;33(8):1978–1995.
  • Wang JC, Chang TH, Goldberg A, et al. Quantitative analysis of growth factor production in the mechanism of fibrosis in agnogenic myeloid metaplasia. Exp Hematol. 2006 Dec;34(12):1617–1623.
  • Kimura A, Katoh O, Hyodo H, et al. Transforming growth factor-beta regulates growth as well as collagen and fibronectin synthesis of human marrow fibroblasts. Br J Haematol. 1989 Aug;72(4):486–491.
  • Varricchio L, Iancu-Rubin C, Upadhyaya B, et al. TGFbeta1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight. 2021 Aug 12;6(18). doi:https://doi.org/10.1172/jci.insight.145651.
  • Ozono Y, Shide K, Kameda T, et al. Neoplastic fibrocytes play an essential role in bone marrow fibrosis in Jak2V617F-induced primary myelofibrosis mice. Leukemia. 2020 May 29.
  • Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013 Sep;13(Suppl 2):S307–9.
  • Marcellino BK, Hoffman R, Tripodi J, et al. Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53. Blood Adv. 2018 Dec 26;2(24):3581–3589.
  • Tsuruta-Kishino T, Koya J, Kataoka K, et al. Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera. Oncogene. 2017 Jun 8;36(23):3300–3311.
  • Ruella M, Salmoiraghi S, Risso A, et al. Telomere shortening in ph-negative chronic myeloproliferative neoplasms: a biological marker of polycythemia vera and myelofibrosis, regardless of hydroxycarbamide therapy. Exp Hematol. 2013 Jul;41(7):627–634.
  • Choi DC, Tremblay D, Iancu-Rubin C, et al. Programmed cell death-1 pathway inhibition in myeloid malignancies: implications for myeloproliferative neoplasms. Ann Hematol. 2017 Jan 6;96(6):919–927.
  • Cimen Bozkus C, Roudko V, Finnigan JP, et al. Immune checkpoint blockade enhances shared neoantigen-induced T-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms. Cancer Discov. 2019 Sep;9(9):1192–1207.
  • Asshoff M, Petzer V, Warr MR, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017 Mar 30;129(13):1823–1830.
  • Mesa RA, Kiladjian JJ, Catalano JV, et al. Simplify-1: a phase III randomized trial of momelotinib versus ruxolitinib in Janus kinase inhibitor-naive patients with myelofibrosis. J Clin Oncol. 2017 Dec 1;35(34):3844–3850.
  • Harrison CN, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018 Feb;5(2):e73–e81.
  • Mesa R, Oh ST, Gerds AT, et al., editors. Transfusion independence is associated with improved overall survival in myelofibrosis patients receiving momelotinib. EHA Annual Meeting; 2021.
  • Abdelrahman RA, Begna KH, Al-Kali A, et al. Momelotinib treatment-emergent neuropathy: prevalence, risk factors and outcome in 100 patients with myelofibrosis. Br J Haematol. 2015 Apr;169(1):77–80.
  • Singer JW, Fleischman A, Al-Fayoumi S, et al. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget. 2018 Sep 7;9(70):33416–33439.
  • Tremblay D, Mascarenhas J. Pacritinib to treat myelofibrosis patients with thrombocytopenia. Expert Rev Hematol. 2018 Sep;11(9):707–714.
  • Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017 May;4(5):e225–e236.
  • Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018 Mar 8;4(5):652.
  • Tremblay D, Mesa R, Scott B, et al. Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. Blood Adv. 2020 Dec 8;4(23):5929–5935.
  • CTI BioPharma Announces Removal Of Full Clinical Hold On Pacritinib [Internet]. [cited 2017 Jan 5]. Available from: http://investors.ctibiopharma.com/phoenix.zhtml?c=92775&p=irol-newsArticle&ID=2234163
  • Gerds AT, Savona MR, Scott BL, et al. Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv. 2020 Nov24;4(22):5825–5835.
  • Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999 Jun 3;399(6735):491–496.
  • Dey A, Chitsaz F, Abbasi A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8758–8763.
  • Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012 Mar 30;149(1):214–231.
  • Ceribelli M, Kelly PN, Shaffer AL, et al. Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11365–11370.
  • Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010 Dec 23;468(7327):1119–1123.
  • Talpaz M, Rampal R, Verstovsek S, et al. editors. CPI-0610, a Bromodomain and Extraterminal Domain Protein (BET) inhibitor, as monotherapy in advanced myelofibrosis patients refractory/intolerant to JAK Inhibitor: update from Phase 2 MANIFEST study. ASH Annual Meeting. 2020. https://ash.confex.com/ash/2020/webprogram/Paper139842.html
  • Verstovsek S, Mascarenhas J, Kremyanskaya M, et al. CPI-0610, Bromodomain and Extraterminal Domain Protein (BET) inhibitor, as “Add-on” to ruxolitinib. Advanced Myelofibrosis Patients with Suboptimal Response: Update of MANIFEST Phase 2 Study. ASH Annual Meeting, 2020. p. Abstract 56 https://ash.confex.com/ash/2020/webprogram/Paper140891.html
  • Mascarenhas J, Harrison C, Patriarca A, et al. CPI-0610, a Bromodomain and Extraterminal Domain Protein (BET) inhibitor, in combination with ruxolitinib. JAK-Inhibitor-Naïve Myelofibrosis Patients: Update of MANIFEST Phase 2 Study. Abstract 55. ASH Annual Meeting, 2020 https://ash.confex.com/ash/2020/webprogram/Paper139000.html. p. Abstract 55.** Upfront CPI-0610 plus ruxolitinib in treatment naïve myelofibrosis patients
  • Korsmeyer SJ. Regulators of cell death. Trends Genet. 1995 Mar;11(3):101–105.
  • Waibel M, Solomon VS, Knight DA, et al. Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep. 2013 Nov27;5(4):1047–1059.
  • Lu M, Wang J, Li Y, et al. Treatment with the Bcl-xL inhibitor ABT-737 in combination with interferon alpha specifically targets JAK2V617F-positive polycythemia vera hematopoietic progenitor cells. Blood. 2010 Nov18;116(20):4284–4287.
  • Petiti J, Lo Iacono M, Rosso V, et al. Bcl-xL represents a therapeutic target in Philadelphia negative myeloproliferative neoplasms. J Cell Mol Med. 2020 Sep;24(18):10978–10986.
  • Pemmaraju N, Garcia J, Potluri J, et al. The addition of navitoclax to ruxolitinib demonstrates efficacy within different high-risk populations in patients with relapsed/refractory myelofibrosis. Abstract 52. ASH Annual Meeting, 2020. p. Abstract 52.
  • Lu M, Wang X, Li Y, et al. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-alpha 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012 Oct 11;120(15):3098–3105.
  • Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013 Feb;13(2):83–96.
  • Lu M, Xia L, Li Y, et al. The orally bioavailable MDM2 antagonist RG7112 and pegylated interferon alpha 2a target JAK2V617F-positive progenitor and stem cells. Blood. 2014 Jul 31;124(5):771–779.
  • Mascarenhas J, Lu M, Kosiorek H, et al. Oral idasanutlin in patients with polycythemia vera. Blood. 2019 Aug 8;134(6):525–533.
  • Mascarenhas J, Higgins B, Anders D, et al. Safety and efficacy of Idasanutlin in patients (pts) with Hydroxyurea (HU)-Resistant/Intolerant Polycythemia Vera (PV): results of an international phase ii study. Blood. 2020;136(Supplement 1):29–31. Abstract 479.
  • Al-Ali H, Delgado R, Lange A, et al. KRT-232, A First-in-class, Murine Double Minute 2 Inhibitor (MDM2I), for Myelofibrosis (MF) Relapsed Or Refractory (R/R) To Janus-Associated Kinase Inhibitor (JAKI) Treatment (TX). EHA Annual Meeting2020. p. Abstract S215.
  • Grimwade LF, Happerfield L, Tristram C, et al. Phospho-STAT5 and phospho-Akt expression in chronic myeloproliferative neoplasms. Br J Haematol. 2009 Nov;147(4):495–506.
  • James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005 Apr 28;434(7037):1144–1148.
  • Yacoub A, Wang E, Rampal R, et al. Addition of parsaclisib, a PI3Kdelta inhibitor, in patients (PTS) with suboptimal response to ruxolitinib (RUX): A Phase 2 Study In Pts With Myelofibrosis (MF). EHA annual meeting 2020. p. Abstract S216.
  • Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989 Nov3;59(3):521–529.
  • Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23 266(5193):2011–2015.
  • Herbert BS, Gellert GC, Hochreiter A, et al. Lipid modification of GRN163, an N3ʹ–>P5ʹ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene. 2005 Aug 4;24(33):5262–5268.
  • Wang X, Hu CS, Petersen B, et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. 2018 Sep 25;2(18):2378–2388.
  • Tefferi A, Lasho TL, Begna KH, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med. 2015 Sep 3;373(10):908–919.
  • Mascarenhas J, Komrokji RS, Palandri F, et al. Randomized, single-blind, multicenter phase II study of two doses of imetelstat in relapsed or refractory myelofibrosis. J Clin Oncol. 2021 Sep 10;39(26):2881–2892.
  • Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood. 2019 Feb 21; 133(8):790–794.
  • Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014 Apr;20(4):408–414.
  • Gerds AT, Vannucchi AM, Passamonti F, et al. A Phase 2 study of luspatercept in patients with myelofibrosis-associated anemia. Blood. 2019;134(Supplement_1):557.
  • Pemmaraju N, Carter BZ, Kantarjian HM, et al. Final results of Phase 2 clinical trial of LCL161, a novel oral SMAC Mimetic/IAP antagonist, for patients with intermediate to high risk myelofibrosis. Blood. 2019;134(Supplement_1):555.
  • Yacoub A, Pettit KM, Bradley TJ, et al. editors A phase 2 study of the LSD1 inhibitor IMG7289 (bomedemstat) for the treatment of advanced myelofibrosis. ASH Annu Meeting. 2020. Abstract 51)
  • Verstovsek S, Talpaz M, Wadleigh M, et al. A randomized, double blind phase 2 study of 3 different doses of prm-151 in patients with myelofibrosis who were previously treated with or ineligible for ruxolitinib: S828. HemaSphere. 2019;3(S1):367.
  • Pemmaraju N, Gupta V, Ali H, et al. Results from a phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with intermediate, or high risk, relapsed/refractory myelofibrosis. Blood. 2019;134(Supplement_1):558.
  • Mascarenhas J, Kosiorek H, Varricchio L, et al. Rationale for and results of a phase I study of the TGF-β 1/3 inhibitor AVID200 in subjects with myelofibrosis: MPN-RC 118 Trial. Abstract 1254. ASH Annual Meeting2020. p. Abstract 1254.
  • Gangat N, Marinaccio C, Swords R, et al. Aurora KInase A inhibition provides clinical benefit, normalizes megakaryocytes, and reduces bone marrow fibrosis in patients with myelofibrosis: a phase I trial. Clin Cancer Res off J Am Assoc Cancer Res. 2019 Aug 15 25(16):4898–4906.
  • Tang D, Taneja A, Rajora P, et al. Systematic literature review of the economic burden and cost of illness in patients with myelofibrosis. Blood. 2019;134(Supplement_1):2184.
  • Gómez-Casares MT, Hernández-Boluda JC, Jiménez-Velasco A, et al. Cost-effectiveness of ruxolitinib vs best available therapy in the treatment of myelofibrosis in Spain. Journal of Health Economics and Outcomes Research. 2017;5(2):162–174.
  • Nooka A, Lonial S. Sequential or combination therapy for multiple myeloma. Expert Rev Hematol. 2012 Oct;5(5):533–545.
  • Verstovsek S, Egyed M, Lech-Marańda E, et al. Robust overall survival and sustained efficacy outcomes during long term exposure to momelotinib in JAK inhibitor Naïve and previously jak inhibitor treated intermediate/high risk myelofibrosis patients. Blood. 2020;136(Supplement 1):51–52.
  • Verstovsek S, Chen CC, Egyed M, et al. MOMENTUM: momelotinib vs danazol in patients with myelofibrosis previously treated with JAKi who are symptomatic and anemic. Future Oncol. 2021 Apr;17(12):1449–1458.
  • Abou Dalle I, Kantarjian H, Daver N, et al. Phase II study of single-agent nivolumab in patients with myelofibrosis. Ann Hematol. 2021 Dec;100(12):2957–2960.
  • Hobbs GS, Cimen Bozkus C, Wadleigh M, et al. Results of a phase II study of PD-1 inhibition in advanced myeloproliferative neoplasms. Blood. 2020;136(Supplement 1):14–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.