1,807
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging drugs for the treatment of bladder storage dysfunction

Pages 277-287 | Received 12 Jun 2022, Accepted 10 Aug 2022, Published online: 18 Aug 2022

References

  • Abreu-Mendes P, Silva J, Cruz F. Pharmacology of the lower urinary tract: update on LUTS treatment. Ther Adv Urol. 2020 May 13;12:1756287220922425. eCollection 2020 Jan-Dec.PMID: 32489425.
  • Peyronnet B, Mironska E, Chapple C, et al. A comprehensive review of overactive bladder pathophysiology: on the way to tailored treatment. Eur Urol. 2019 Jun; 75(6):988–1000. Epub 2019 Mar 26.
  • Hsu FC, Weeks CE, Selph SS, et al. Updating the evidence on drugs to treat overactive bladder: a systematic review. Int Urogynecol J. 2019 Oct;30:1603–1617. Epub 2019 Jul 25.PMID: 31346670.
  • Serati M, Andersson KE, Dmochowski R, et al. Systematic review of combination drug therapy for non-neurogenic lower urinary tract symptoms. Eur Urol. 2019 Jan;75(1):129–168. Epub 2018 Oct 4.PMID: 30293906.
  • Gandi C, Sacco E. Pharmacological management of urinary incontinence: current and emerging treatment. Clin Pharmacol. 2021 Nov 25;13:209–223. eCollection 2021.
  • Dahm P, Brasure M, MacDonald R, et al. Comparative effectiveness of newer medications for lower urinary tract symptoms attributed to benign prostatic hyperplasia: a systematic review and meta-analysis. Eur Urol. 2017 Apr;71(4):570–581. Epub 2016 Oct 4.PMID: 27717522.
  • Andersson K-E, Cardozo L, Cruz F, et al. Pharmacological treatment of urinary incontinence. In: Abrams BP, Cardozo L, Wein AWA , editors. Incontinence. ICI and ICUD 6thed. Vol. 1; 2017. p. 807–957.
  • Painter CE, Suskind AM. Advances in pharmacotherapy for the treatment of overactive bladder. Curr Bladder Dysfunct Rep. 2019 Dec;14(4):377–384.
  • Abreu-Mendes P, Martins-Silva C, Antunes-Lopes T, et al. Treatment of non-neurogenic lower urinary tract symptoms-a review of key publications from 2018 onward. Eur Urol Focus. 2021 Nov;7(6):1438–1447. Epub 2020 Jul 2. PMID: 32624454.
  • Joseph S, Maria SA, Peedicayil J. Drugs currently undergoing preclinical or clinical trials for the treatment of overactive bladder: a review. Curr Ther Res Clin Exp. 2022 Apr 6;96:100669. eCollection 2022.PMID: 35494662.
  • Igawa Y, Aizawa N, Michel MC. β3 -Adrenoceptors in the normal and diseased urinary bladder-What are the open questions? Br J Pharmacol. 2019 Jul;176(14):2525–2538. Epub 2019 May 3.PMID: 30868554.
  • Salcedo C, Davalillo S, Cabellos J, et al. In vivo and in vitro pharmacological characterization of SVT-40776, a novel M3 muscarinic receptor antagonist, for the treatment of overactive bladder. Br J Pharmacol. 2009;156(5):807–817.
  • Song M, Kim JH, Lee KS, et al. The efficacy and tolerability of tarafenacin, a new muscarinic acetylcholine receptor M3 antagonist in patients with overactive bladder; randomized, double-blind, placebo-controlled phase 2 study. Int J Clin Pract. 2015;69(2):242–250.
  • Lee MJ, Moon JH, Lee HK, et al. Pharmacological characterization of DA-8010, a novel muscarinic receptor antagonist selective for urinary bladder over salivary gland. Eur J Pharmacol. 2019;843:240–250.
  • Son HS. Efficacy and Safety of DA8010, a novel M3 antagonist, in Patients with Overactive Bladder. Randomized, Double-blind, Phase 2 study. 2021. MP02-18:AUA2021.
  • Zacche MM, Giarenis I, Cardozo L. Phase II drugs that target cholinergic receptors for the treatment of overactive bladder. Expert Opin Investig Drugs. 2014 Oct;23(10):1365–1374. Epub 2014 Jun 5. PMID: 24899225.
  • Dmochowski RR, Haab F, Robinson D. A randomized, placebo-controlled clinical development program exploring the use of litoxetine for treating urinary incontinence. Neurourol Urodyn. 2021 Aug;40(6):1515–1523.
  • Frenkl TL, Zhu H, Reiss T, et al. A multicenter, double-blind, randomized, placebo controlled trial of a neurokinin-1 receptor antagonist for overactive bladder. J Urol. 2010;184(2):616–622. Epub 2010/07/20. PubMed PMID: 20639026
  • Martínez-García R, Abadías M, Arañó P, et al. ESCLIN 006/00 study group. Cizolirtine citrate, an effective treatment for symptomatic patients with urinary incontinence secondary to overactive bladder: a pilot dose-finding study. Eur Urol. 2009 Jul;56(1):184–190. Epub 2008 Apr 18.PMID: 18485575.
  • Zát’ura F, Vsetica J, Abadías M, et al. E-4018/CL50 Study Group. Cizolirtine citrate is safe and effective for treating urinary incontinence secondary to overactive bladder: a phase 2 proof-of-concept study. Eur Urol. 2010 Jan;57(1):145–152. Epub 2009 May 7. PMID: 19446951.
  • Digesu GA, Verdi E, Cardozo L, et al. Phase IIb, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to determine effects of elocalcitol in women with overactive bladder and idiopathic detrusor overactivity. Urology. 2012;80(1):48–54. Epub 2012/05/26. PubMed PMID: 22626580.
  • Andersson KE. Potential future pharmacological treatment of bladder dysfunction. Basic Clin Pharmacol Toxicol. 2016 Oct;119(3):75–85. Epub 2016 Apr 6.PMID: 26990140.
  • Burnstock G. Purine and purinergic receptors. Brain Neurosci Adv. 2018 Dec 6;2:2398212818817494. eCollection 2018 Jan-Dec.
  • Fry CH, McCloskey KD. Purinergic signalling in the urinary bladder - When function becomes dysfunction.Auton Neurosci. Auton Neurosci. 2021 Nov;235:102852. Epub 2021 Jul 17.PMID: 34329833.
  • North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002 Oct;82(4):1013–1067.
  • Elneil S, Skepper JN, Kidd EJ, et al. Distribution of P2X(1) and P2X(3) receptors in the rat and human urinary bladder. Pharmacology. 2001;63(2):120–128.
  • Svennersten K, Hallén-Grufman K, de Verdier PJ, et al. Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder. BMC Urol. 2015 Aug 8;15:81.
  • Vlaskovska M, Kasakov L, Rong W, et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. Neurosci. 2001 Aug 1;21(15):5670–5677.
  • Pandita RK, Andersson KE. Intravesical adenosine triphosphate stimulates the micturition reflex in awake, freely moving rats. J Urol. 2002 Sep;168(3):1230–1234. ea.PMID: 12187273.
  • Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal. 2014 Mar;10(1):103–155. Epub 2013 Nov 22. PMID: 24265069; PMCID: PMC3944045.
  • Ford AP, Gever JR, Nunn PA, et al. Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol. 2006 Feb;147(Suppl 2):S132–43. PMID: 16465177.
  • Ford AP, Cockayne DA. ATP and P2X purinoceptors in urinary tract disorders. Handb Exp Pharmacol. 2011;202:485–526. PMID: 21290240.
  • North RA, Jarvis MF. P2X receptors as drug targets. Mol Pharmacol. 2013 Apr;83(4):759–769. Epub 2012 Dec 19.PMID: 23253448.
  • Marucci G, Dal Ben D, Buccioni M, et al. Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications. Expert Opin Ther Pat. 2019 Dec;29(12):943–963. Epub 2019 Nov 20.PMID: 31726893.
  • Hanno PM. Afferent clinical data for lead candidate, AF-219, demonstrate improvements in pain and urgency in interstitial cystitis/bladder pain syndrome (IC/BPS). Afferent Pharmaceuticals [online]. Available from: http://www.businesswire.com/news/home/20150226005187/en/Afferent-Clinical-Data-Lead-Candidate-AF-219-Demonstrate
  • Abdulqawi R, Dockry R, Holt K, et al. P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 2015 Mar 28;385(9974):1198–1205. Epub 2014 Nov 25.PMID: 25467586.
  • Muccino DR, Morice AH, Birring SS, et al. Design and rationale of two phase 3 randomised controlled trials (COUGH-1 and COUGH-2) of gefapixant, a P2X3 receptor antagonist, in refractory or unexplained chronic cough. ERJ Open Res. 2020 Nov 2;6(4):00284–2020. eCollection 2020 Oct.PMID: 33263037.
  • Abu-Zaid A, Aljaili AK, Althaqib A, et al. Safety and efficacy of gefapixant, a novel drug for the treatment of chronic cough: a systematic review and meta-analysis of randomized controlled trials. Ann Thorac Med. 2021 Apr-Jun;16(2):127–140. Epub 2021 Apr 17.PMID: 34012479.
  • McGarvey LP, Birring SS, Morice AH, et al. COUGH-1 and COUGH-2 Investigators. Efficacy and safety of gefapixant, a P2X3 receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): results from two double-blind, randomised, parallel-group, placebo-controlled, phase 3 trials. Lancet. 2022 Mar 5;399(10328):909–923.
  • Ford AP, Dillon MP, Kitt MM, et al. The discovery and development of gefapixant. Auton Neurosci. 2021 Nov;235:102859. Epub 2021 Jul 31.PMID: 34403981.
  • Davenport AJ, Neagoe I, Bräuer N, et al. Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep. 2021 Oct 6;11(1):19877. PMID: 34615939.
  • Morice A, Smith JA, McGarvey L, et al. Eliapixant (BAY 1817080), a P2X3 receptor antagonist, in refractory chronic cough: a randomised, placebo-controlled, crossover phase 2a study. Eur Respir J. 2021 Nov 18;58(5):2004240. Print 2021 Nov.PMID: 33986030.
  • Klein S, Gashaw I, Baumann S, et al. First-in-human study of eliapixant (BAY 1817080), a highly selective P2X3 receptor antagonist: tolerability, safety and pharmacokinetics. Br J Clin Pharmacol. 2022 Apr 18. DOI:10.1111/bcp.15358. Online ahead of print.PMID: 35437837.
  • Andersson KE. TRP channels as lower urinary tract sensory targets. Med Sci (Basel). 2019 May 22;7(5):67. PMID: 31121962.
  • Andersson KE. Agents in early development for treatment of bladder dysfunction - promise of drugs acting at TRP channels? Expert Opin Investig Drugs. 2019 Sep;28(9):749–755. Epub 2019 Aug 14.
  • Vanneste M, Segal A, Voets T, et al. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol. 2021 Mar;18(3):139–159. Epub 2021 Feb 3. PMID: 33536636.
  • Avelino A, Cruz F. TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn Schmiedebergs Arch Pharmacol. 2006 Jul;373(4):287–299. Epub 2006 May 24.
  • Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev. 2014 Jul;66(3):676–814. PMID: 24951385.
  • Deruyver Y, Voets T, De Ridder D, et al. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 2015 May;115(5):686–697.
  • Birder LA, Nakamura Y, Kiss S, et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci. 2002 Sep;5(9):856–860. PMID: 12161756.
  • Mingin GC, Heppner TJ, Tykocki NR, et al. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. Am J Physiol Regul Integr Comp Physiol. 2015 Sep 15;309(6):R629–38.
  • Zhang HY, Chu JF, Li P, et al. Expression and diagnosis of transient receptor potential vanilloid1 in urothelium of patients with overactive bladder. J Biol Regul Homeost Agents. 2015 Oct-Dec;29(4): 875–879. PMID: 26753651.
  • Round P, Priestley A, Robinson J. An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects. Br J Clin Pharmacol. 2011 Dec;72(6):921–931.
  • Bamps D, Vriens J, de Hoon J, et al. TRP channel cooperation for nociception: therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2021 Jan 6;61:655–677. Epub 2020 Sep 25. PMID: 32976736.
  • Brown W, Leff RL, Griffin A, et al. Safety, pharmacokinetics, and pharmacodynamics study in healthy subjects of oral neo6860, a modality selective transient receptor potential vanilloid subtype 1 antagonist. J Pain. 2017 Jun;18(6):726–738.
  • Streng T, Axelsson HE, Hedlund P, et al. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol. 2008 Feb;53(2):391–400.
  • Preti D, Saponaro G, Szallasi A. Transient receptor potential ankyrin 1 (TRPA1) antagonists. Pharm Pat Anal. 2015;4(2):75–94. PMID: 25853468.
  • Andrade EL, Forner S, Bento AF, et al. TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am J Physiol Renal Physiol. 2011 May;300(5):F1223–34.
  • DeBerry JJ, Schwartz ES, Davis BM. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain. 2014 Jul;155(7):1280–1287.
  • Ferrer-Montiel A, Fernández-Carvajal A, Planells-Cases R, et al. Advances in modulating thermosensory TRP channels. Expert Opin Ther Pat. 2012 Sep;22(9):999–1017.
  • Kamei J, Aizawa N, Nakagawa T, et al. Attenuated lipopolysaccharide-induced inflammatory bladder hypersensitivity in mice deficient of transient receptor potential ankilin1. Sci Rep. 2018 Oct 23;8(1):15622.
  • Gevaert T, Vriens J, Segal A, et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007 Nov;117(11):3453–3462.
  • Janssen DA, Hoenderop JG, Jansen KC, et al. The mechanoreceptor TRPV4 is localized in adherence junctions of the human bladder urothelium: a morphological study. J Urol. 2011 Sep;186(3):1121–1127.
  • Mochizuki T, Sokabe T, Araki I, et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009 Aug 7;284(32):21257–21264.
  • Thorneloe KS, Sulpizio AC, Lin Z, et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydro xypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther. 2008 Aug;326(2):432–442.
  • Aizawa N, Wyndaele JJ, Homma Y, et al. Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol Urodyn. 2012 Jan;31(1):148–155. Epub 2011 Oct 28.PMID: 22038643.
  • Everaerts W, Zhen X, Ghosh D, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19084–19089.
  • Charrua A, Cruz CD, Jansen D, et al. Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. BJU Int. 2015 Mar;115(3):452–460.
  • Thorneloe KS, Cheung M, Bao W, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med. 2012;4(159):159ra148.
  • Goyal N, Skrdla P, Schroyer R, et al. Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects. Am J Cardiovasc Drugs. 2019 Jun;19(3):335–342.
  • Voets T, Owsianik G, Nilius B. TRPM8. Handb Exp Pharmacol. 2007;179:329–344.
  • Izquierdo C, Martín-Martínez M, Gómez-Monterrey I, et al. TRPM8 channels: advances in structural studies and pharmacological modulation. Int J Mol Sci. 2021 Aug 7;22(16):8502. PMID: 34445208.
  • Mukerji G, Yiangou Y, Corcoran SL, et al. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 2006 Mar 6;6:6.
  • Hayashi T, Kondo T, Ishimatsu M, et al. Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci Res. 2009 Nov;65(3):245–251.
  • Lei Z, Ishizuka O, Imamura T, et al. Functional roles of transient receptor potential melastatin 8 (TRPM8) channels in the cold stress-induced detrusor overactivity pathways in conscious rats. Neurourol Urodyn. 2013 Jun;32(5):500–504.
  • Lashinger ES, Steiginga MS, Hieble JP, et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol. 2008 Sep;295(3):F803–10.
  • Ito H, Aizawa N, Sugiyama R, et al. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. 2016 Mar;117(3):484–494.
  • Almeida MC, Hew-Butler T, Soriano RN, et al. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci. 2012 Feb 8;32(6):2086–2099.
  • Aizawa N, Fujimori Y, Kobayashi JI, et al. KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats. Neurourol Urodyn. 2018 Jun;37(5):1633–1640.
  • Nakanishi O, Fujimori Y, Aizawa N, et al. KPR-5714, a novel transient receptor potential melastatin 8 antagonist, improves overactive bladder via inhibition of bladder afferent hyperactivity in rats. J Pharmacol Exp Ther. 2020 May;373(2):239–247.
  • Aizawa N, Fujimori Y, Nakanishi O, et al. Efficacy of the combination of KPR-5714, a novel transient receptor potential melastatin 8 (TRPM8) antagonist, and β3-adrenoceptor agonist or anticholinergic agent on bladder dysfunction in rats with bladder overactivity. Eur J Pharmacol. 2021 May 15;899:173995.
  • Winchester WJ, Gore K, Glatt S, et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J Pharmacol Exp Ther. 2014 Nov;351(2):259–269.
  • Capodice JL, Kaplan SA. The endocannabinoid system, cannabis, and cannabidiol: implications in urology and men’s health. Curr Urol. 2021 Jun;15(2):95–100. Epub 2021 May 28. PMID: 34168527; PMCID: PMC8221009.
  • Finn DP, Haroutounian S, Hohmann AG, et al. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain. 2021 Jul 1;162(Suppl 1):S5–S25. PMID: 33729211; PMCID: PMC8819673.
  • Cristino L, Becker T, Di Marzo V. Endocannabinoids and energy homeostasis: an update. Biofactors. 2014 Jul-Aug;40(4):389–397. Epub 2014 Apr 21. PMID: 24752980.
  • Bjorling DE, Wang ZY. Potential of endocannabinoids to control bladder pain. Front Syst Neurosci. 2018 May 15;12:17. PMID: 29867382; PMCID: PMC5962905.
  • Vučković S, Srebro D, Vujović KS, et al. Cannabinoids and pain: new insights from old molecules. Front Pharmacol. 2018 Nov 13;9:1259. PMID: 30542280; PMCID: PMC6277878.
  • Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 2020 Feb 15;188:111953. Epub 2019 Dec 30. PMID: 31945644.
  • Bakali E, Elliott RA, Taylor AH, et al. Human urothelial cell lines as potential models for studying cannabinoid and excitatory receptor interactions in the urinary bladder. Naunyn Schmiedebergs Arch Pharmacol. 2014 Jun;387(6):581–589. Epub 2014 Mar 21. PMID: 24652077.
  • Christie S, Brookes S, Zagorodnyuk V. Endocannabinoids in bladder sensory mechanisms in health and diseases. Front Pharmacol. 2021 Jul 5;12:708989. PMID: 34290614; PMCID: PMC8287826.
  • Mukerji G, Yiangou Y, Agarwal SK, et al. Increased cannabinoid receptor 1-immunoreactive nerve fibers in overactive and painful bladder disorders and their correlation with symptoms. Urology. 2010 Jun;75(6):1514.e15–20. Epub 2010 Mar 25. PMID: 20346490.
  • Svízenská I, Dubový P, Sulcová A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures–a short review. Pharmacol Biochem Behav. 2008 Oct;90(4):501–511. PMID: 18584858.
  • Hedlund P, Gratzke C. The endocannabinoid system - a target for the treatment of LUTS? Nat Rev Urol. 2016 Aug;13(8):463–470. Epub 2016 Jul 5. PMID: 27377161.
  • Taylor C, Birch B. Cannabinoids in which benign conditions might they be appropriate to treat: a systematic review. Urology. 2021 Feb;148:8–25. Epub 2020 Oct 28. PMID: 33129871.
  • Zygmunt PM, Petersson J, Andersson DA, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999 Jul 29;400(6743):452–457. PMID: 10440374.
  • Strittmatter F, Gandaglia G, Benigni F, et al. Expression of fatty acid amide hydrolase (FAAH) in human, mouse, and rat urinary bladder and effects of FAAH inhibition on bladder function in awake rats. Eur Urol. 2012 Jan;61(1):98–106. Epub 2011 Sep 12. PMID: 21930339.
  • Aizawa N, Hedlund P, Füllhase C, et al. Inhibition of peripheral FAAH depresses activities of bladder mechanosensitive nerve fibers of the rat. J Urol. 2014 Sep;192(3):956–963. Epub 2014 Apr 16. PMID: 24746881.
  • Füllhase C, Schreiber A, Giese A, et al. Spinal neuronal cannabinoid receptors mediate urodynamic effects of systemic fatty acid amide hydrolase (FAAH) inhibition in rats. Neurourol Urodyn. 2016 Apr;35:464–470. Epub 2015 Mar 18.PMID: 25788026.
  • Wagenlehner FME, van Till JWO, Houbiers JGA, et al. Fatty acid amide hydrolase inhibitor treatment in men with chronic prostatitis/chronic pelvic pain syndrome: an adaptive double-blind, randomized controlled trial. Urology. 2017 May;103:191–197. Epub 2017 Feb 27. PMID: 28254462
  • Spanagel R, Bilbao A. Approved cannabinoids for medical purposes - Comparative systematic review and meta-analysis for sleep and appetite. Neuropharmacology. 2021 Sep 15;196:108680. Epub 2021 Jun 26. PMID: 34181977.
  • Brady CM, DasGupta R, Dalton C, et al. An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult Scler. 2004 Aug;10:425–433. PMID: 15327041.
  • Wade DT, Makela P, Robson P, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler. 2004 Aug;10:434–441. PMID: 15327042.
  • Freeman RM, Adekanmi O, Waterfield MR, et al. The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int Urogynecol J Pelvic Floor Dysfunct. 2006 Nov;17:636–641. Epub 2006 Mar 22. PMID: 16552618.
  • Kavia RB, De Ridder D, Constantinescu CS, et al. Randomized controlled trial of Sativex to treat detrusor overactivity in multiple sclerosis. Mult Scler. 2010 Nov;16(11):1349–1359. Epub 2010 Sep 9. PMID: 20829244.
  • Abo Youssef N, Schneider MP, Mordasini L, et al. Cannabinoids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review and meta-analysis. BJU Int. 2017 Apr;119:515–521. Epub 2017 Feb 23. PMID: 28058780.
  • Torres-Moreno MC, Papaseit E, Torrens M, et al. Assessment of efficacy and tolerability of medicinal cannabinoids in patients with multiple sclerosis: a systematic review and meta-analysis. JAMA Network Open. 2018 Oct 5;1(6):e183485. PMID: 30646241; PMCID: PMC6324456.
  • Nabata KJ, Tse EK, Nightingale TE, et al. The therapeutic potential and usage patterns of cannabinoids in people with spinal cord injuries: a systematic review. Curr Neuropharmacol. 2021;19(3):402–432. PMID: 32310048; PMCID: PMC8033968.
  • Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2014 Sep 15;307(6):R571–84.
  • Andersson KE, Christ GJ, Davies KP, et al. A review of bk-channel α-subunit gene transfer. Ther Clin Risk Manag. 2021;17:589–599. Epub 2021/06/12. PubMed PMID: 34113116; PubMed Central PMCID: PMCPMC8187094.
  • Rovner E, Chai TC, Jacobs S, et al. Evaluating the safety and potential activity of URO-902 (hMaxi-K) gene transfer by intravesical instillation or direct injection into the bladder wall in female participants with idiopathic (non-neurogenic) overactive bladder syndrome and detrusor overactivity from two double-blind, imbalanced, placebo-controlled randomized phase 1 trials. Neurourol Urodyn. 2020;39(2):744–753. Epub 2020/01/17. PubMed PMID: 31945197; PubMed Central PMCID: PMCPMC702801
  • Gacci M, Andersson KE, Chapple C, et al. LatesT evidence on the use of phosphodiesterase type 5 inhibitors for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur Urol. 2016 Jul;70:124–133. Epub 2016 Jan 22. PMID: 26806655.
  • Schmidt HH, Schmidt PM, Stasch JP. NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol. 2009;191:309–339. PMID: 19089335.
  • Breitenstein S, Roessig L, Sandner P, et al. Novel sGC stimulators and sGC activators for the treatment of heart failure. Handb Exp Pharmacol. 2017;243:225–247. PMID: 27900610.
  • Mónica FZ, Antunes E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat Rev Urol. 2018 Jan;15(1):42–54. Epub 2017 Nov 14. PMID: 29133940.
  • Zabbarova IV, Ikeda Y, Kozlowski MG, et al. Benign prostatic hyperplasia/obstruction ameliorated using a soluble guanylate cyclase activator. J Pathol. 2022 Apr;256:442–454. Epub 2022 Feb 15. PMID: 34936088; PMCID: PMC8930559.
  • de Oliveira MG, Calmasini FB, Alexandre EC, et al. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice. Am J Physiol Renal Physiol. 2016 Jul 1;311(1):F85–93. Epub 2016 Apr 27. PMID: 27122537.
  • Frey R, Mück W, Unger S, et al. Pharmacokinetics, pharmacodynamics, tolerability, and safety of the soluble guanylate cyclase activator cinaciguat (BAY 58-2667) in healthy male volunteers. J Clin Pharmacol. 2008 Dec;48:1400–1410. Epub 2008 Sep 8. PMID: 18779378.
  • Lapp H, Mitrovic V, Franz N, et al. Cinaciguat (BAY 58-2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation. 2009 Jun 2;119(21):2781–2788. Epub 2009 May 18. PMID: 19451356.