287
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging tyrosine kinase inhibitors for head and neck cancer

, &
Pages 333-344 | Received 17 Jun 2022, Accepted 14 Sep 2022, Published online: 21 Sep 2022

References

  • Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92.
  • Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–578. PubMed PMID: 16467544.
  • Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11(1):21–28. PubMed PMID: 19897418.
  • Ferris RL, Blumenschein G Jr., Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–1867. PubMed PMID: 27718784.
  • Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–965. PubMed PMID: 27247226.
  • Mehra R, Seiwert TY, Gupta S, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer. 2018;119(2):153–159. PubMed PMID: 29955135; PMCID: PMC6048158.
  • Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–1928. PubMed PMID: 31679945.
  • Whiteside TL. Immunobiology of head and neck cancer. Cancer Metastasis Rev. 2005;24(1):95–105. PubMed PMID: 15785875.
  • Mandal R, Senbabaoglu Y, Desrichard A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016;1(17):e89829. PubMed PMID: 27777979; PMCID: PMC5070962.
  • Nguyen N, Bellile E, Thomas D, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 2016;38(7):1074–1084. PubMed PMID: 26879675; PMCID: PMC4900934.
  • Fang J, Li X, Ma D, et al. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma. BMC Cancer. 2017;17(1):375. PubMed PMID: 28549420; PMCID: PMC5446725.
  • Engelsen AST, Lotsberg ML, Abou Khouzam R, et al. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol. 2022;13:869676. PubMed PMID: 35572601; PMCID: PMC9092944.
  • Rubin Grandis J, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–832. PubMed PMID: 9625170.
  • Zhu X, Zhang F, Zhang W, et al. Prognostic role of epidermal growth factor receptor in head and neck cancer: a meta-analysis. J Surg Oncol. 2013;108(6):387–397. PubMed PMID: 24038070.
  • Earnest-Noble LB, Lipsky RS, Kuhel WI, et al. Identification of occult metastatic disease via lymphoscintigraphy-guided neck dissection in N0 oral squamous cell carcinoma. Head Neck. 2022;44(7):1596–1603. PubMed PMID: 35429187.
  • Snyder V, Goyal LK, Bowers EMR, et al. PET/CT poorly predicts AJCC 8th edition pathologic staging in HPV-related oropharyngeal cancer. Laryngoscope. 2021;131(7):1535–1541. PubMed PMID: 33428218.
  • Fernandez KA, Allen P, Campbell M, et al. Atorvastatin is associated with reduced cisplatin-induced hearing loss. J Clin Invest. 2021;131(1): PubMed PMID: 33393488; PMCID: PMC7773379. DOI:10.1172/JCI142616.
  • Vargo JA, Ward MC, Caudell JJ, et al. A Multi-institutional Comparison of SBRT and IMRT for Definitive Reirradiation of Recurrent or Second Primary Head and Neck Cancer. Int J Radiat Oncol Biol Phys. 2018;100(3):595–605. PubMed PMID: 28899556; PMCID: PMC7418052.
  • Liu X, Suo H, Zhou S, et al. Afatinib induces pro-survival autophagy and increases sensitivity to apoptosis in stem-like HNSCC cells. Cell Death Dis. 2021;12(8):728. PubMed PMID: 34294686; PMCID: PMC8298552.
  • De Pauw I, Lardon F, Van den Bossche J, et al. Simultaneous targeting of EGFR, HER2, and HER4 by Afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines. Mol Oncol. 2018;12(6):830–854. PubMed PMID: 29603584; PMCID: PMC5983215.
  • Machiels JP, Bossi P, Menis J, et al. Activity and safety of Afatinib in a window preoperative EORTC study in patients with squamous cell carcinoma of the head and neck (SCCHN). Ann Oncol. 2018;29(4):985–991. PubMed PMID: 29346507.
  • Margalit DN, Haddad RI, Tishler RB, et al. A phase 1 study of afatinib in combination with postoperative radiation therapy with and without weekly docetaxel in intermediate- and high-risk patients with resected squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2019;105(1):132–139. PubMed PMID: 31082494.
  • Montanuy H, Martinez-Barriocanal A, Antonio Casado J, et al. Gefitinib and Afatinib Show Potential Efficacy for Fanconi Anemia-Related Head and Neck Cancer. Clin Cancer Res. 2020;26(12):3044–3057. PubMed PMID: 32005748.
  • Haddad R, Guigay J, Keilholz U, et al. Afatinib as second-line treatment in patients with recurrent/metastatic squamous cell carcinoma of the head and neck: subgroup analyses of treatment adherence, safety and mode of Afatinib administration in the LUX-Head and Neck 1 trial. Oral Oncol. 2019;97:82–91. PubMed PMID: 31450171.
  • Guo Y, Ahn MJ, Chan A, et al. Afatinib versus methotrexate as second-line treatment in Asian patients with recurrent or metastatic squamous cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 3): an open-label, randomised phase III trial. Ann Oncol. 2019;30(11):1831–1839. PubMed PMID: 31501887; PMCID: PMC6927323.
  • Kao HF, Liao BC, Huang YL, et al. Afatinib and pembrolizumab for recurrent or metastatic head and neck squamous cell carcinoma (Alpha study): a phase ii study with biomarker analysis. Clin Cancer Res. 2022;28(8):1560–1571. PubMed PMID: 35046059.
  • Dunn LA, Fury MG, Sherman EJ, et al. Phase I study of induction chemotherapy with Afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer. Head Neck. 2018;40(2):233–241. PubMed PMID: 28963790; PMCID: PMC6760238.
  • Xie C, Wan X, Quan H, et al. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor-2 inhibitor. Cancer Sci. 2018;109(4):1207–1219. PubMed PMID: 29446853; PMCID: PMC5891194.
  • Lin B, Song X, Yang D, et al. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRbeta and FGFR1. Gene. 2018;654:77–86. PubMed PMID: 29454091.
  • Shen G, Zheng F, Ren D, et al. Anlotinib: a novel multi-targeting tyrosine kinase inhibitor in clinical development. J Hematol Oncol. 2018;11(1):120. PubMed PMID: 30231931; PMCID: PMC6146601.
  • Hu F, Guo L, Yu J, et al. using patient-derived xenografts to explore the efficacy of treating head-and-neck squamous cell carcinoma with anlotinib. Pathol Oncol Res. 2021;27:1610008. PubMed PMID: 34955687; PMCID: PMC8696349.
  • Deng Z, Liao W, Wei W, et al. Anlotinib as a promising inhibitor on tumor growth of oral squamous cell carcinoma through cell apoptosis and mitotic catastrophe. Cancer Cell Int. 2021;21(1):37. PubMed PMID: 33422069; PMCID: PMC7796634.
  • Lu Y, Lin J, Duan M, et al. Anlotinib suppresses oral squamous cell carcinoma growth and metastasis by targeting the ras protein to inhibit the pi3k/akt signalling pathway. Anal Cell Pathol (Amst). 2021;2021:5228713. PubMed PMID: 34926131; PMCID: PMC8674064.
  • Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14(22):7272–7283. PubMed PMID: 19010843.
  • Patson B, BC R, Olszanski AJ. Pharmacokinetic evaluation of axitinib. Expert Opin Drug Metab Toxicol. 2012;8(2):259–270. PubMed PMID: 22248343.
  • Kessler ER, Bowles DW, Flaig TW, et al. Axitinib, a new therapeutic option in renal cell carcinoma. Drugs Today (Barc). 2012;48(10):633–644. PubMed PMID: 23110259.
  • Hui EP, Ma BBY, Loong HHF, et al. Safety, and pharmacokinetics of axitinib in nasopharyngeal carcinoma: a preclinical and phase ii correlative study. Clin Cancer Res. 2018;24(5):1030–1037. PubMed PMID: 29301831.
  • Locati LD, Cavalieri S, Bergamini C, et al. Phase II trial with axitinib in recurrent and/or metastatic salivary gland cancers of the upper aerodigestive tract. Head Neck. 2019;41(10):3670–3676. PubMed PMID: 31355973.
  • Swiecicki PL, Zhao L, Belile E, et al. A phase II study evaluating axitinib in patients with unresectable, recurrent or metastatic head and neck cancer. Invest New Drugs. 2015;33(6):1248–1256. PubMed PMID: 26453566.
  • Swiecicki PL, Bellile EL, Brummel CV, et al. Efficacy of axitinib in metastatic head and neck cancer with novel radiographic response criteria. Cancer. 2021;127(2):219–228. PubMed PMID: 33079405.
  • Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–2308. PubMed PMID: 21926191.
  • Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):2660–2666. PubMed PMID: 21606412; PMCID: PMC3646303.
  • Bentzien F, Zuzow M, Heald N, et al. In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid. 2013;23(12):1569–1577. PubMed PMID: 23705946; PMCID: PMC3868259.
  • van Boxtel W, Uijen MJM, Krens SD, et al. Excessive toxicity of cabozantinib in a phase II study in patients with recurrent and/or metastatic salivary gland cancer. Eur J Cancer. 2022;161:128–137. PubMed PMID: 34920917.
  • Williams JP, Kim I, Ito E, et al. Pre-clinical characterization of Dacomitinib (PF-00299804), an irreversible pan-ErbB inhibitor, combined with ionizing radiation for head and neck squamous cell carcinoma. PLoS One. 2014;9(5):e98557. PubMed PMID: 24853121; PMCID: PMC4031184.
  • Wilson GD, Wilson TG, Hanna A, et al. Dacomitinib and gedatolisib in combination with fractionated radiation in head and neck cancer. Clin Transl Radiat Oncol. 2021;26:15–23. PubMed PMID: 33251343; PMCID: PMC7677653.
  • Prawira A, Brana-Garcia I, Spreafico A, et al. Phase I trial of dacomitinib, a pan-human epidermal growth factor receptor (HER) inhibitor, with concurrent radiotherapy and cisplatin in patients with locoregionally advanced squamous cell carcinoma of the head and neck (XDC-001). Invest New Drugs. 2016;34(5):575–583. PubMed PMID: 27289242.
  • Bauman JE, Duvvuri U, Gooding WE, et al. Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer. JCI Insight. 2017;2(6):e90449. PubMed PMID: 28352657; PMCID: PMC5358497 exists.
  • Stabile LP, He G, Lui VW, et al. c-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res. 2013;19(2):380–392. PubMed PMID: 23213056; PMCID: PMC3549019.
  • Egloff AM, Grandis JR. Improving Response Rates to EGFR-Targeted Therapies for Head and Neck Squamous Cell Carcinoma: candidate Predictive Biomarkers and Combination Treatment with Src Inhibitors. J Oncol. 2009; 896407. PubMed PMID: 19636423; PMCID: PMC2712676. DOI: 10.1155/2009/896407
  • Lehman CE, Spencer A, Hall S, et al. IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK. Sci Rep. 2021;11(1):10826. PubMed PMID: 34031486; PMCID: PMC8144381.
  • Park NS, Park YK, Yadav AK, et al. Anti-growth and pro-apoptotic effects of dasatinib on human oral cancer cells through multi-targeted mechanisms. J Cell Mol Med. 2021;25(17):8300–8311. PubMed PMID: 34318593; PMCID: PMC8419177.
  • Yang Z, Liao J, Cullen KJ, et al. Inhibition of IKKbeta/NF-kappaB signaling pathway to improve Dasatinib efficacy in suppression of cisplatin-resistant head and neck squamous cell carcinoma. Cell Death Discov. 2020;6:36. PubMed PMID: 32435511; PMCID: PMC7229171.
  • Brooks HD, Glisson BS, Bekele BN, et al. Phase 2 study of dasatinib in the treatment of head and neck squamous cell carcinoma. Cancer. 2011;117(10):2112–2119. PubMed PMID: 21523723; PMCID: PMC3117018.
  • Stabile LP, Egloff AM, Gibson MK, et al. IL6 is associated with response to dasatinib and cetuximab: phase II clinical trial with mechanistic correlatives in cetuximab-resistant head and neck cancer. Oral Oncol. 2017;69:38–45. PubMed PMID: 28559019; PMCID: PMC5944328.
  • Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel,multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005;105(7):2941–2948. PubMed PMID: 15598814.
  • Sweeny L, Zimmermann TM, Liu Z, et al. Evaluation of tyrosine receptor kinases in the interactions of head and neck squamous cell carcinoma cells and fibroblasts. Oral Oncol. 2012;48(12):1242–1249. PubMed PMID: 22795534; PMCID: PMC3496822.
  • Brands RC, Knierim LM, De Donno F, et al. Targeting VEGFR and FGFR in head and neck squamous cell carcinoma in vitro. Oncol Rep. 2017;38(3):1877–1885. PubMed PMID: 28714017.
  • Brands RC, De Donno F, Knierim ML, et al. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett. 2019;18(3):2220–2231. PubMed PMID: 31452723; PMCID: PMC6676536.
  • Carneiro A, De Vito FB, Moraes-Souza H, et al. RhoA/ROCKs signaling is increased by treatment with TKI-258 and leads to increased apoptosis in SCC-4 oral squamous cell carcinoma cell line. J Oral Pathol Med. 2021;50(4):394–402. PubMed PMID: 33222274.
  • Schoffski P, Gebreyohannes Y, Van Looy T, et al. In vivo evaluation of fibroblast growth factor receptor inhibition in mouse xenograft models of gastrointestinal stromal tumor. Biomedicines. 2022;10(5):1135. PubMed PMID: 35625872.
  • Thwe AM, Mossey P, Ellis IR. Effect of tyrosine kinase inhibitors on cell migration and epithelial-to-mesenchymal transition in Asian head and neck cancer cell lines. J Oral Pathol Med. 2021;50(10):1031–1039. PubMed PMID: 34358366.
  • Ngan HL, Poon PHY, Su YX, et al. Erlotinib sensitivity of MAPK1p.D321N mutation in head and neck squamous cell carcinoma. NPJ Genom Med. 2020;5(1):17. PubMed PMID: 32351709; PMCID: PMC7171136.
  • Liu S, Wang Y, Han Y, et al. EREG-driven oncogenesis of Head and Neck Squamous Cell Carcinoma exhibits higher sensitivity to Erlotinib therapy. Theranostics. 2020;10(23):10589–10605. PubMed PMID: 32929368; PMCID: PMC7482801.
  • William WN Jr., Tsao AS, Feng L, et al. Phase II study of cisplatin, docetaxel, and erlotinib in patients with recurrent and/or metastatic head and neck squamous cell carcinomas. Oncologist. 2018;23(5):526–e49. PubMed PMID: 29371473; PMCID: PMC5947451 article.
  • Subbiah V, Dumbrava EI, Jiang Y, et al. Dual EGFR blockade with cetuximab and erlotinib combined with anti-VEGF antibody bevacizumab in advanced solid tumors: a phase 1 dose escalation triplet combination trial. Exp Hematol Oncol. 2020;9(1):7. PubMed PMID: 32337094; PMCID: PMC7171918.
  • Ahn PH, Machtay M, Anne PR, et al. Phase I trial using induction ciplatin, docetaxel, 5-fu and erlotinib followed by cisplatin, bevacizumab and erlotinib with concurrent radiotherapy for advanced head and neck cancer. Am J Clin Oncol. 2018;41(5):441–446. PubMed PMID: 27391356.
  • Le X, Gleber-Netto FO, Rubin ML, et al. Induction chemotherapy with or without erlotinib in patients with head and neck squamous cell carcinoma amenable for surgical resection. Clin Cancer Res. 2022; PubMed PMID: 35443062. doi:10.1158/1078-0432.CCR-21-3239
  • Patil VM, Noronha V, Joshi A, et al. Phase I/II Study of palliative triple metronomic chemotherapy in platinum-refractory/early-failure oral cancer. J Clin Oncol. 2019;37(32):3032–3041. PubMed PMID: 31539316.
  • Kashyap L, Patil V, Noronha V, et al. Efficacy and safety of neoadjuvant chemotherapy (NACT) with paclitaxel plus carboplatin and oral metronomic chemotherapy (OMCT) in patients with technically unresectable oral squamous cell carcinoma (OSCC). Ecancermedicalscience. 2021;15:1325. PubMed PMID: 35211194; PMCID: PMC8816505.
  • Van Allen EM, Lui VW, Egloff AM, et al. Genomic correlate of exceptional erlotinib response in head and neck squamous cell carcinoma. JAMA Oncol. 2015;1(2):238–244. PubMed PMID: 26181029; PMCID: PMC4557203.
  • Khalil A, Jameson MJ. The EGFR inhibitor gefitinib enhanced the response of human oral squamous cell carcinoma to cisplatin in vitro. Drugs R D. 2017;17(4):545–555. PubMed PMID: 28828595; PMCID: PMC5694417.
  • Citro S, Bellini A, Miccolo C, et al. Synergistic antitumour activity of HDAC inhibitor SAHA and EGFR inhibitor gefitinib in head and neck cancer: a key role for DeltaNp63alpha. Br J Cancer. 2019;120(6):658–667. PubMed PMID: 30765872; PMCID: PMC6461861.
  • Low JL, Lau DP, Zhang X, et al. A chemical genetic screen identifies Aurora kinases as a therapeutic target in EGFR T790M negative, gefitinib-resistant head and neck squamous cell carcinoma (HNSCC). EBioMedicine. 2021;64:103220. PubMed PMID: 33529999; PMCID: PMC7851772.
  • Tang X, He J, Li B, et al. Efficacy and safety of gefitinib in patients with advanced head and neck squamous cell carcinoma: a meta-analysis of randomized controlled trials. J Oncol. 2019;2019:6273438. PubMed PMID: 31239839; PMCID: PMC6556337.
  • Irshad R, Haider G, Hashmi M, et al. Efficacy of gefitinib and methorexate in patients with advanced stage and recurrent head and neck cancer. Cureus. 2021;13(6):e15451. PubMed PMID: 34262802; PMCID: PMC8260212.
  • Lehman CE, Mendez RE, Dougherty MI, et al. Survivin in insulin-like growth factor-induced resistance to lapatinib in head and neck squamous carcinoma cells. Front Oncol. 2019;9:13. PubMed PMID: 30729097; PMCID: PMC6351440.
  • Weiss JM, Grilley-Olson JE, Deal AM, et al. Phase 2 trial of neoadjuvant chemotherapy and transoral endoscopic surgery with risk-adapted adjuvant therapy for squamous cell carcinoma of the head and neck. Cancer. 2018;124(14):2986–2992. PubMed PMID: 29741773.
  • Hackman TG, Patel SN, Deal AM, et al. Novel induction therapy transoral surgery treatment paradigm with risk-adapted adjuvant therapy for squamous cell carcinoma of the head and neck - Mature clinical and functional outcomes. Oral Oncol. 2020;110:104957. PubMed PMID: 32823258.
  • Matsui J, Funahashi Y, Uenaka T, et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–5465. PubMed PMID: 18765537.
  • Hao Z, Wang P. Lenvatinib in management of solid tumors. Oncologist. 2020;25(2):e302–e10. PubMed PMID: 32043789; PMCID: PMC7011622.
  • Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–630. PubMed PMID: 25671254.
  • Killock D. Neuroendocrine cancer: SELECT-lenvatinib in thyroid cancer. Nat Rev Clin Oncol. 2015;12(4):189. PubMed PMID: 25707627.
  • Schmittnaegel M, Rigamonti N, Kadioglu E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. 2017;9(385): PubMed PMID: 28404865. DOI:10.1126/scitranslmed.aak9670.
  • Taylor MH, Lee CH, Makker V, et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J Clin Oncol. 2020;38(11):1154–1163. PubMed PMID: 31961766; PMCID: PMC7145588.
  • Chen TH, Chang PM, Yang MH. Combination of pembrolizumab and lenvatinib is a potential treatment option for heavily pretreated recurrent and metastatic head and neck cancer. J Chin Med Assoc. 2021;84(4):361–367. PubMed PMID: 33496513.
  • Tchekmedyian V, Sherman EJ, Dunn L, et al. Phase II study of lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J Clin Oncol. 2019;37(18):1529–1537. PubMed PMID: 30939095; PMCID: PMC6599407.
  • Podar K, Tonon G, Sattler M, et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A. 2006;103(51):19478–19483. PubMed PMID: 17164332; PMCID: PMC1748251.
  • Miyamoto S, Kakutani S, Sato Y, et al. Drug review: pazopanib. Jpn J Clin Oncol. 2018;48(6):503–513. PubMed PMID: 29684209.
  • Adkins D, Mehan P, Ley J, et al. Pazopanib plus cetuximab in recurrent or metastatic head and neck squamous cell carcinoma: an open-label, phase 1b and expansion study. Lancet Oncol. 2018;19(8):1082–1093. PubMed PMID: 30001987; PMCID: PMC6561471.
  • Kim HJ, Kim H-P, Yoon Y-K, et al. Antitumor activity of HM781-36B, a pan-HER tyrosine kinase inhibitor, in HER2-amplified breast cancer cells. Anticancer Drugs. 2012;23(3):288–297. PubMed PMID: 23422737.
  • Cha MY, Lee KO, Kim M, et al. Antitumor activity of HM781-36B, a highly effective pan-HER inhibitor in erlotinib-resistant NSCLC and other EGFR-dependent cancer models. Int J Cancer. 2012;130(10):2445–2454. PubMed PMID: 21732342.
  • Nam HJ, Kim HP, Yoon YK, et al. Antitumor activity of HM781-36B, an irreversible Pan-HER inhibitor, alone or in combination with cytotoxic chemotherapeutic agents in gastric cancer. Cancer Lett. 2011;302(2):155–165. PubMed PMID: 21306821.
  • Robichaux JP, Elamin YY, Tan Z, et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med. 2018;24(5):638–646. PubMed PMID: 29686424; PMCID: PMC5964608.
  • Robichaux JP, Elamin YY, Vijayan RSK, et al. Pan-Cancer landscape and analysis of erbb2 mutations identifies poziotinib as a clinically active inhibitor and enhancer of t-DM1 activity. Cancer Cell. 2019;36(4):444–57 e7. PubMed PMID: 31588020; PMCID: PMC6944069.
  • Elamin YY, Robichaux JP, Carter BW, et al. Poziotinib for patients with her2 exon 20 mutant non–small-cell lung cancer: results from a phase ii trial. J Clin Oncol. 2022;40(7):702–709. PubMed PMID: 34550757; PMCID: PMC8887948.
  • Le X, Cornelissen R, Garassino M, et al. Poziotinib in non-small-cell lung cancer harboring her2 exon 20 insertion mutations after prior therapies: Zenith20-2 trial. J Clin Oncol. 2022;40(7):710–718. PubMed PMID: 34843401; PMCID: PMC8887939.
  • Lee JH, Heo SG, Ahn BC, et al. A phase II study of poziotinib in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Cancer Med. 2021;10(20):7012–7020. PubMed PMID: 34528763; PMCID: PMC8525103.
  • Adnane L, Trail PA, Taylor I, et al. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 2006;407:597–612. PubMed PMID: 16757355.
  • Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–3140. PubMed PMID: 18852116.
  • Laban S, Steinmeister L, Gleer L, et al. Sorafenib sensitizes head and neck squamous cell carcinoma cells to ionizing radiation. Radiother Oncol. 2013;109(2):286–292. PubMed PMID: 23953412.
  • Mockelmann N, Rieckmann T, Busch CJ, et al. Effect of sorafenib on cisplatin-based chemoradiation in head and neck cancer cells. Oncotarget. 2016;7(17):23542–23551. PubMed PMID: 27015558; PMCID: PMC5029646.
  • Beizaei K, Gleer L, Hoffer K, et al. Receptor tyrosine kinase MET as potential target of multi-kinase inhibitor and radiosensitizer sorafenib in HNSCC. Head Neck. 2019;41(1):208–215. PubMed PMID: 30552828.
  • Williamson SK, Moon J, Huang CH, et al. Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: southwest Oncology Group Study S0420. J Clin Oncol. 2010;28(20):3330–3335. PubMed PMID: 20498388; PMCID: PMC2903329.
  • Lalami Y, Garcia C, Flamen P, et al. Phase II trial evaluating the efficacy of sorafenib (BAY 43-9006) and correlating early fluorodeoxyglucose positron emission tomography-CT response to outcome in patients with recurrent and/or metastatic head and neck cancer. Head Neck. 2016;38(3):347–354. PubMed PMID: 25332069.
  • Gilbert J, Schell MJ, Zhao X, et al. A randomized phase II efficacy and correlative studies of cetuximab with or without sorafenib in recurrent and/or metastatic head and neck squamous cell carcinoma. Oral Oncol. 2015;51(4):376–382. PubMed PMID: 25593015; PMCID: PMC4459134.
  • Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62(16):4645–4655. PubMed PMID: 12183421.
  • Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–7290. PubMed PMID: 12499271.
  • Ciardiello F, Caputo R, Damiano V, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. 2003;9(4):1546–1556. PubMed PMID: 12684431.
  • Sano D, Matsumoto F, Valdecanas DR, et al. Vandetanib restores head and neck squamous cell carcinoma cells’ sensitivity to cisplatin and radiation in vivo and in vitro. Clin Cancer Res. 2011;17(7):1815–1827. PubMed PMID: 21350000; PMCID: PMC3074405.
  • Gustafson DL, Frederick B, Merz AL, et al. Dose scheduling of the dual VEGFR and EGFR tyrosine kinase inhibitor vandetanib (ZD6474, Zactima) in combination with radiotherapy in EGFR-positive and EGFR-null human head and neck tumor xenografts. Cancer Chemother Pharmacol. 2008;61(2):179–188. PubMed PMID: 17393165.
  • Chu PL, Shihabuddeen WA, Low KP, et al. Vandetanib sensitizes head and neck squamous cell carcinoma to photodynamic therapy through modulation of EGFR-dependent DNA repair and the tumour microenvironment. Photodiagnosis Photodyn Ther. 2019;27:367–374. PubMed PMID: 31299389.
  • Papadimitrakopoulou VA, Frank SJ, Cohen EW, et al. Phase I study of vandetanib with radiation therapy with or without cisplatin in locally advanced head and neck squamous cell carcinoma. Head Neck. 2016;38(3):439–447. PubMed PMID: 25352401; PMCID: PMC4414661.
  • Limaye S, Riley S, Zhao S, et al. A randomized phase II study of docetaxel with or without vandetanib in recurrent or metastatic squamous cell carcinoma of head and neck (SCCHN). Oral Oncol. 2013;49(8):835–841. PubMed PMID: 23727257.
  • Tannehill-Gregg S, Kergosien E, Rosol TJ. Feline head and neck squamous cell carcinoma cell line: characterization, production of parathyroid hormone-related protein, and regulation by transforming growth factor-beta. Vitro Cell Dev Biol Anim. 2001;37(10):676–683. PubMed PMID: 11776973.
  • Tannehill-Gregg SH, Levine AL, Rosol TJ. Feline head and neck squamous cell carcinoma: a natural model for the human disease and development of a mouse model. Vet Comp Oncol. 2006;4(2):84–97. PubMed PMID: 19754818.
  • Wypij JM, Fan TM, Fredrickson RL, et al. In vivo and in vitro efficacy of zoledronate for treating oral squamous cell carcinoma in cats. J Vet Intern Med. 2008;22(1):158–163. PubMed PMID: 18289304.
  • Wypij JM. A naturally occurring feline model of head and neck squamous cell carcinoma. Patholog Res Int. 2013;2013:502197. PubMed PMID: 23970998; PMCID: PMC3730145.
  • Soltero-Rivera MM, Krick EL, Reiter AM, et al. Prevalence of regional and distant metastasis in cats with advanced oral squamous cell carcinoma: 49 cases (2005-2011). J Feline Med Surg. 2014;16(2):164–169. PubMed PMID: 24027053.
  • Supsavhad W, Dirksen WP, Martin CK, et al. Animal models of head and neck squamous cell carcinoma. Vet J. 2016;210:7–16. PubMed PMID: 26965084.
  • Supsavhad W, Dirksen WP, Hildreth BE, et al. p16, pRb, and p53 in Feline Oral Squamous Cell Carcinoma. Vet Sci. 2016;3(3): PubMed PMID: 29056726; PMCID: PMC5606583. DOI:10.3390/vetsci3030018.
  • Bregazzi VS, LaRue SM, Powers BE, et al. Response of feline oral squamous cell carcinoma to palliative radiation therapy. Vet Radiol Ultrasound. 2001;42(1):77–79. PubMed PMID: 11245242.
  • McDonald C, Looper J, Greene S. Response rate and duration associated with a 4Gy 5 fraction palliative radiation protocol. Vet Radiol Ultrasound. 2012;53(3):358–364. PubMed PMID: 22182209.
  • Poirier VJ, Kaser-Hotz B, Vail DM, et al. Efficacy and toxicity of an accelerated hypofractionated radiation therapy protocol in cats with oral squamous cell carcinoma. Vet Radiol Ultrasound. 2013;54(1):81–88. PubMed PMID: 23078236.
  • Looper JS, Malarkey DE, Ruslander D, et al. Epidermal growth factor receptor expression in feline oral squamous cell carcinomas. Vet Comp Oncol. 2006;4(1):33–40. PubMed PMID: 19754827.
  • Bergkvist GT, Argyle DJ, Morrison L, et al. Expression of epidermal growth factor receptor (EGFR) and Ki67 in feline oral squamous cell carcinomas (FOSCC). Vet Comp Oncol. 2011;9(2):106–117. PubMed PMID: 21569196.
  • Yoshikawa H, Ehrhart EJ, Charles JB, et al. Immunohistochemical characterization of feline oral squamous cell carcinoma. Am J Vet Res. 2012;73(11):1801–1806. PubMed PMID: 23106467.
  • Lee RH, Kang H, Yom SS, et al. Treatment of fanconi anemia-associated head and neck cancer: opportunities to improve outcomes. Clin Cancer Res. 2021;27(19):5168–5187. PubMed PMID: 34045293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.