445
Views
2
CrossRef citations to date
0
Altmetric
Review

Emerging antiviral therapies and drugs for the treatment of influenza

, &
Pages 389-403 | Received 05 Jun 2022, Accepted 15 Nov 2022, Published online: 24 Nov 2022

References

  • Kreijtz JH, Fouchier RA, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res. 2011;162(1–2):19–30.
  • Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9(10):e1003657.
  • Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.
  • Brüssow H. The beginning and ending of a respiratory viral pandemic-lessons from the Spanish flu. Microb Biotechnol. 2022;15(5):1301–1317.
  • Viboud C, Simonsen L, Fuentes R, et al. Global mortality impact of the 1957-1959 Influenza pandemic. J Infect Dis. 2016;213(5):738–745.
  • Henderson DA, Courtney B, Inglesby TV, et al. Public health and medical responses to the 1957-58 influenza pandemic. Biosecur Bioterror. 2009;7(3):265–273.
  • Squires RB, Pickett BE, Das S, et al. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus. Infect Genet Evol. 2014;28:351–357.
  • Smith GJ, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459(7250):1122–1125.
  • Makalo M, Dundon WG, Settypalli T, et al. Highly pathogenic avian influenza (A/H5N1) virus outbreaks in Lesotho. Emerg Microbes Infect. 2022;11(1):757–760.
  • Yi Z, Lu G, Chaojian S, et al. Exploring the determinants of influenza A/H7N9 control intervention efficacy in China: disentangling the effect of the ‘1110’ policy and poultry vaccination. Transbound Emerg Dis. 2022;69(5). DOI:10.1111/tbed.14532.
  • Jagger BW, Wise HM, Kash JC, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337(6091):199–204.
  • Centers for Disease Control and Prevention (CDC). Isolation of avian influenza A(H5N1) viruses from humans–Hong Kong, May-December 1997. MMWR Morb Mortal Wkly Rep. 1997;46(50):1204–1207.
  • Li Q, Zhou L, Zhou M, et al. Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med. 2014;370(6):520–532.
  • Wise HM, Foeglein A, Sun J, et al. A complicated message: identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol. 2009;83(16):8021–8031.
  • Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.
  • Dong-Din-On F, Songserm T, Pissawong T, et al. Cell penetrable human scFv specific to middle domain of matrix protein-1 protects mice from lethal influenza. Viruses. 2015;7(1):154–179.
  • Poungpair O, Pootong A, Maneewatch S, et al. A human single chain transbody specific to matrix protein (M1) interferes with the replication of influenza A virus. Bioconjug Chem. 2010;21(7):1134–1141.
  • Zhang J, Hu Y, Musharrafieh R, et al. Focusing on the influenza virus polymerase complex: recent progress in drug discovery and assay development. Curr Med Chem. 2019;26(13):2243–2263.
  • Jalily PH, Duncan MC, Fedida D, et al. Put a cork in it: plugging the M2 viral ion channel to sink influenza. Antiviral Res. 2020;178:104780.
  • Manzoor R, Igarashi M, Takada A. Influenza A virus M2 Protein: roles from ingress to egress. Int J Mol Sci. 2017;18(12):2649.
  • Mcnicholl IR, Mcnicholl JJ. Neuraminidase inhibitors: zanamivir and oseltamivir. Ann Pharmacother. 2001;35(1):57–70.
  • Mancuso CE, Gabay MP, Steinke LM, et al. Peramivir: an intravenous neuraminidase inhibitor for the treatment of 2009 H1N1 influenza. Ann Pharmacother. 2010;44(7–8):1240–1249.
  • von Itzstein M, Wu WY, Kok GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363(6428):418–423.
  • Cheer SM, Wagstaff AJ. Zanamivir: an update of its use in influenza. Drugs. 2002;62(1):71–106.
  • Anuwongcharoen N, Shoombuatong W, Tantimongcolwat T, et al. Exploring the chemical space of influenza neuraminidase inhibitors. Peerj. 2016;4:e1958.
  • Stevaert A, Naesens L. The influenza virus polymerase complex: an update on its structure, functions, and significance for antiviral drug design. Med Res Rev. 2016;36(6):1127–1173.
  • Te VA, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–493.
  • Zhang Q, Liang T, Nandakumar KS, et al. Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opin Pharmacother. 2021;22(6):715–728.
  • Malakhov MP, Aschenbrenner LM, Smee DF, et al. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother. 2006;50(4):1470–1479.
  • Nicholls JM, Moss RB, Haslam SM. The use of sialidase therapy for respiratory viral infections. Antiviral Res. 2013;98(3):401–409.
  • Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza virus infections and cellular kinases. Viruses. 2019;11(2):171.
  • Perwitasari O, Yan X, O’Donnell J, et al. Repurposing kinase inhibitors as antiviral agents to control influenza a virus replication. Assay Drug Dev Technol. 2015;13(10):638–649.
  • Chase G, Deng T, Fodor E, et al. Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology. 2008;377(2):431–439.
  • Chutiwitoonchai N, Mano T, Kakisaka M, et al. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development. Virology. 2017;507:32–39.
  • Hayden FG, Hay AJ. Emergence and transmission of influenza A viruses resistant to amantadine and rimantadine. Curr Top Microbiol Immunol. 1992;176:119–130.
  • Jefferson T, Jones M, Doshi P, et al. Neuraminidase inhibitors for preventing and treating influenza in healthy adults. Cochrane Database Syst Rev. 2010;2010(2):D1265.
  • Barik S. New treatments for influenza. Bmc Med. 2012;10:104.
  • O’Hanlon R, Shaw ML. Baloxavir marboxil: the new influenza drug on the market. Curr Opin Virol. 2019;35:14–18.
  • Mehta K, Goneau LW, Wong J, et al. Zoonotic influenza and human health-Part 2: clinical features, diagnosis, treatment, and prevention strategies. Curr Infect Dis Rep. 2018;20(10):38.
  • Shen Z, Lou K, Wang W. New small-molecule drug design strategies for fighting resistant influenza A. Acta Pharm Sin B. 2015;5(5):419–430.
  • Pielak RM, Schnell JR, Chou JJ. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci U S A. 2009;106(18):7379–7384.
  • Deyde VM, Xu X, Bright RA, et al. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis. 2007;196(2):249–257.
  • Bright RA, Medina MJ, Xu X, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005;366(9492):1175–1181.
  • Yuan S, Jiang SC, Zhang ZW, et al. Abuse of amantadine in poultry may be associated with higher fatality rate of H5N1 infections in humans. J Med Virol. 2022;94(6):2588–2597.
  • Keyser LA, Karl M, Nafziger AN, et al. Comparison of central nervous system adverse effects of amantadine and rimantadine used as sequential prophylaxis of influenza A in elderly nursing home patients. Arch Intern Med. 2000;160(10):1485–1488.
  • Rey-Carrizo M, Torres E, Ma C, et al. 3-Azatetracyclo[5.2.1.1(5,8).0(1,5)]undecane derivatives: from wild-type inhibitors of the M2 ion channel of influenza A virus to derivatives with potent activity against the V27A mutant. J Med Chem. 2013;6(22):9265–9274.
  • Jalily PH, Eldstrom J, Miller SC, et al. Mechanisms of action of novel influenza A/M2 viroporin inhibitors derived from hexamethylene Amiloride. Mol Pharmacol. 2016;90(2):80–95.
  • Hu Y, Musharrafieh R, Ma C, et al. An M2-V27A channel blocker demonstrates potent in vitro and in vivo antiviral activities against amantadine-sensitive and -resistant influenza A viruses. Antiviral Res. 2017;140:45–54.
  • Glubokova EA, Leneva IA, Kartashova NP, et al. Efficacy of (R)-6-Adamantane-Derivatives of 1,3-Oxazinan-2-One and Piperidine-2,4-Dione in the treatment of mice infected by the A/California/04/2009 influenza virus. Acta Naturae. 2021;13(2):116–125.
  • Duncan MC, Onguéné PA, Kihara I, et al. Virtual screening identifies chebulagic acid as an inhibitor of the M2(S31N) viral ion channel and influenza a virus. Molecules. 2020;25(12):2903.
  • Hayden FG, Osterhaus AD, Treanor JJ, et al. Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenzavirus infections. GG167 influenza study group. N Engl J Med. 1997;337(13):874–880.
  • Kim CU, Lew W, Williams MA, et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc. 1997;119(4):681–690.
  • Cass LM, Efthymiopoulos C, Bye A. Pharmacokinetics of zanamivir after intravenous, oral, inhaled or intranasal administration to healthy volunteers. Clin Pharmacokinet. 1999;36(Suppl 1):1–11.
  • Gubareva LV, Webster RG, Hayden FG. Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob Agents Chemother. 2001;45(12):3403–3408.
  • Birnkrant D, Cox E. The emergency use authorization of peramivir for treatment of 2009 H1N1 influenza. N Engl J Med. 2009;361(23):2204–2207.
  • Ikematsu H, Kawai N. Laninamivir octanoate: a new long-acting neuraminidase inhibitor for the treatment of influenza. Expert Rev Anti Infect Ther. 2011;9(10):851–857.
  • Taylor NR, von Itzstein M. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J Med Chem. 1994;37(5):616–624.
  • Collins PJ, Haire LF, Lin YP, et al. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature. 2008;453(7199):1258–1261.
  • Brown SK, Tseng YY, Aziz A, et al. Characterization of influenza B viruses with reduced susceptibility to influenza neuraminidase inhibitors. Antiviral Res. 2022;200:105280.
  • Colman PM, Hoyne PA, Lawrence MC. Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol. 1993;67(6):2972–2980.
  • Watson KG, Cameron R, Fenton RJ, et al. Highly potent and long-acting trimeric and tetrameric inhibitors of influenza virus neuraminidase. Bioorg Med Chem Lett. 2004;14(6):1589–1592.
  • Shie JJ, Fang JM, Lai PT, et al. A practical synthesis of zanamivir phosphonate congeners with potent anti-influenza activity. J Am Chem Soc. 2011;133(44):17959–17965.
  • Dahan A, Zimmermann EM, Ben-Shabat S. Modern prodrug design for targeted oral drug delivery. Molecules. 2014;19(10):16489–16505.
  • Kumar S, Goicoechea S, Kumar S, et al. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov Today. 2020;25(8):1389–1402.
  • Zhao H, Jiang S, Ye Z, et al. Discovery of hydrazide-containing oseltamivir analogues as potent inhibitors of influenza A neuraminidase. Eur J Med Chem. 2021;221:113567.
  • Ye J, Lin L, Xu J, et al. Design, synthesis, biological evaluation and in silico studies of pyrazole-Based NH(2)-Acyl oseltamivir analogues as potent neuraminidase inhibitors. Pharmaceuticals. 2021;14(4):371.
  • Chan R, Tao KP, Ye J, et al. Inhibition of influenza virus replication by oseltamivir derivatives. Pathogens. 2022;11(2):237.
  • Kutkat O, Kandeil A, Moatasim Y, et al. In Vitro and in vivo antiviral studies of new heteroannulated 1,2,3-Triazole glycosides targeting the neuraminidase of influenza a viruses. Pharmaceuticals. 2022;15(3):351.
  • Xiao M, Xu L, Lin D, et al. Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur J Med Chem. 2021;213:113161.
  • Zhong ZJ, Hu XT, Cheng LP, et al. Discovery of novel thiophene derivatives as potent neuraminidase inhibitors. Eur J Med Chem. 2021;225:113762.
  • Evteev S, Nilov D, Polenova A, et al. Bifunctional inhibitors of influenza virus neuraminidase: molecular design of a sulfonamide linker. Int J Mol Sci. 2021;22(23):13112.
  • Ivachtchenko AV, Ivanenkov YA, Mitkin OD, et al. Novel oral anti-influenza drug candidate AV5080. J Antimicrob Chemother. 2014;69(7):1892–1902.
  • Dose range study to evaluate the efficacy and safety of av5080 in patients with influenza - full text view - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/show/NCT05095545?cond=AV5080&draw=2&rank=2
  • Yamashita M. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza. Antivir Chem Chemother. 2010;21(2):71–84.
  • Search of: CS-8958 - List Results - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=CS-8958&term=&cntry=&state=&city=&dist=
  • Gagarinova VM, Ignat’Eva GS, Sinitskaia LV, et al. The new chemical preparation arbidol: its prophylactic efficacy during influenza epidemics. Zh Mikrobiol Epidemiol Immunobiol. 1993;1993(5):40–43.
  • Nasser ZH, Swaminathan K, Müller P, et al. Inhibition of influenza hemagglutinin with the antiviral inhibitor arbidol using a proteomics based approach and mass spectrometry. Antiviral Res. 2013;100(2):399–406.
  • Liu Q, Xiong HR, Lu L, et al. Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacol Sin. 2013;34(8):1075–1083.
  • Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014;107:84–94.
  • Search of: arbidol - List Results - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=arbidol&term=&cntry=&state=&city=&dist=
  • Weis W, Brown JH, Cusack S, et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333(6172):426–431.
  • Kelm S, Paulson JC, Rose U, et al. Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. Eur J Biochem. 1992;205(1):147–153.
  • Matrosovich MN, Gambaryan AS, Tuzikov AB, et al. Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology. 1993;196(1):111–121.
  • Gambaryan AS, Tuzikov AB, Chinarev AA, et al. Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. Antiviral Res. 2002;55(1):201–205.
  • Reuter JD, Myc A, Hayes MM, et al. Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjug Chem. 1999;10(2):271–278.
  • Hendricks GL, Weirich KL, Viswanathan K, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem. 2013;288(12):8061–8073.
  • Moons SJ, Adema GJ, Derks MT, et al. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology. 2019;29(6):433–445.
  • Jeyaram RA, Radha CA, Gromiha MM, et al. Design of fluorinated sialic acid analog inhibitor to H5 hemagglutinin of H5N1 influenza virus through molecular dynamics simulation study. J Biomol Struct Dyn. 2020;38(12):3504–3513.
  • Sun X, Ling Z, Yang Z, et al. Broad neutralizing antibody-based strategies to tackle influenza. Curr Opin Virol. 2022;53:101207.
  • Dreyfus C, Laursen NS, Kwaks T, et al. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337(6100):1343–1348.
  • Lee PS, Yoshida R, Ekiert DC, et al. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc Natl Acad Sci U S A. 2012;109(42):17040–17045.
  • Ekiert DC, Kashyap AK, Steel J, et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature. 2012;489(7417):526–532.
  • Lee PS, Ohshima N, Stanfield RL, et al. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun. 2014;5:3614.
  • Watanabe A, Mccarthy KR, Kuraoka M, et al. Antibodies to a conserved influenza head interface epitope protect by an IgG subtype-dependent mechanism. Cell. 2019;177(5):1124–1135.
  • Zhu P, Yi X, Zhang L, et al. Identification of H7N9 hemagglutinin novel protein epitopes that elicit strong antibody-dependent, cell-mediated cytotoxic activities with protection from influenza infection in mouse model. Cell Immunol. 2021;359:104255.
  • Russell CJ, Hu M, Okda FA. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 2018;26(10):841–853.
  • Throsby M, van den Brink E, Jongeneelen M, et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One. 2008;3(12):e3942.
  • Tan GS, Lee PS, Hoffman RM, et al. Characterization of a broadly neutralizing monoclonal antibody that targets the fusion domain of group 2 influenza A virus hemagglutinin. J Virol. 2014;88(23):13580–13592.
  • Paules CI, Lakdawala S, Mcauliffe JM, et al. The hemagglutinin a stem antibody MEDI8852 prevents and controls disease and limits transmission of pandemic influenza viruses. J Infect Dis. 2017;216(3):356–365.
  • Baranovich T, Jones JC, Russier M, et al. The hemagglutinin stem-binding monoclonal antibody VIS410 controls influenza virus-induced acute respiratory distress syndrome. Antimicrob Agents Chemother. 2016;60(4):2118–2131.
  • Yi KS, Choi JA, Kim P, et al. Broader neutralization of CT-P27 against influenza A subtypes by combining two human monoclonal antibodies. PLoS One. 2020;15(7):e236172.
  • Tsybalova LM, Stepanova LA, Ramsay ES, et al. Influenza B: prospects for the development of cross-Protective vaccines. Viruses. 2022;14(6):1323.
  • Okuno Y, Isegawa Y, Sasao F, et al. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol. 1993;67(5):2552–2558.
  • Wang W, Sun X, Li Y, et al. Human antibody 3E1 targets the HA stem region of H1N1 and H5N6 influenza A viruses. Nat Commun. 2016;7(1):13577.
  • Corti D, Voss J, Gamblin SJ, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 2011;333(6044):850–856.
  • Schneemann A, Speir JA, Tan GS, et al. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J Virol. 2012;86(21):11686–11697.
  • Reich S, Guilligay D, Pflug A, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature. 2014;516(7531):361–366.
  • Su M, Tan J, Lin CY. Development of HIV-1 integrase inhibitors: recent molecular modeling perspectives. Drug Discov Today. 2015;20(11):1337–1348.
  • Liu Z, Gu S, Zhu X, et al. Discovery and optimization of new 6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline derivatives as potent influenza virus PA(N) inhibitors. Eur J Med Chem. 2022;227:113929.
  • Liao Y, Ye Y, Li S, et al. Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PA(N) endonuclease. Eur J Med Chem. 2020;189:112048.
  • Kakuda TN, Yogaratnam J, Rito J, et al. Phase I study on safety and pharmacokinetics of a novel influenza endonuclease inhibitor, AL-794 (JNJ-64155806), following single- and multiple-ascending doses in healthy adults. Antivir Ther. 2018;23(7):555–566.
  • Jones JC, Marathe BM, Vogel P, et al. The PA endonuclease inhibitor RO-7 protects mice from lethal challenge with influenza A or B Viruses. Antimicrob Agents Chemother. 2017;61(5). DOI:10.1128/AAC.02460-16
  • Yuan S, Chu H, Singh K, et al. A novel small-molecule inhibitor of influenza A virus acts by suppressing PA endonuclease activity of the viral polymerase. Sci Rep. 2016;6:22880.
  • Song MS, Kumar G, Shadrick WR, et al. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proc Natl Acad Sci U S A. 2016;113(13):3669–3674.
  • Takashita E, Daniels RS, Fujisaki S, et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017-2018. Antiviral Res. 2020;175:104718.
  • Takashita E, Kawakami C, Morita H, et al. Detection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in Japan. Euro Surveill. 2019;24(3). DOI:10.2807/1560-7917.ES.2019.24.3.1800698.
  • Takashita E, Kawakami C, Morita H, et al. Detection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in Japan. Euro Surveill. 2019;24(3):1800698.
  • Gubareva LV, Mishin VP, Patel MC, et al. Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons. Euro Surveill. 2019;24(3). DOI:10.2807/1560-7917.ES.2019.24.3.1800666.
  • Koszalka P, Tilmanis D, Roe M, et al. Baloxavir marboxil susceptibility of influenza viruses from the Asia-Pacific, 2012-2018. Antiviral Res. 2019;164:91–96.
  • Ivashchenko AA, Mitkin OD, Jones JC, et al. Synthesis, inhibitory activity and oral dosing formulation of AV5124, the structural analogue of influenza virus endonuclease inhibitor baloxavir. J Antimicrob Chemother. 2021;76(4):1010–1018.
  • Search of: TG-1000 - List Results - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=TG-1000&term=&cntry=&state=&city=&dist=
  • Hayden F. Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis. 2009;48(Suppl 1):S3–S13.
  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100(2):446–454.
  • Sangawa H, Komeno T, Nishikawa H, et al. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob Agents Chemother. 2013;57(11):5202–5208.
  • Liu X, Liang J, Yu Y, et al. Discovery of aryl benzoyl hydrazide derivatives as novel potent broad-spectrum inhibitors of influenza A virus RNA-Dependent RNA Polymerase (RdRp). J Med Chem. 2022;65(5):3814–3832.
  • Khongnomnan K, Makkoch J, Poomipak W, et al. Human miR-3145 inhibits influenza A viruses replication by targeting and silencing viral PB1 gene. Exp Biol Med (Maywood). 2015;240(12):1630–1639.
  • Guilligay D, Tarendeau F, Resa-Infante P, et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol. 2008;15(5):500–506.
  • Clark MP, Ledeboer MW, Davies I, et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J Med Chem. 2014;57(15):6668–6678.
  • Huang Q, Zhong Y, Li J, et al. Kinase inhibitor roscovitine as a PB2 cap-binding inhibitor against influenza a virus replication. Biochem Biophys Res Commun. 2020;526(4):1143–1149.
  • Hu Y, Li H, Wu M, et al. Single and multiple dose pharmacokinetics and safety of ZSP1273, an RNA polymerase PB2 protein inhibitor of the influenza A virus: a phase 1 double-blind study in healthy subjects. Expert Opin Investig Drugs. 2021;30(11):1159–1167.
  • Beigel JH, Nam HH, Adams PL, et al. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res. 2019;167:45–67.
  • Yang J, Du J, Huang C, et al. Discovery of 5-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrazin-2(1H)-one derivatives as new potent PB2 inhibitors. Bioorg Med Chem Lett. 2019;29(13):1609–1613.
  • Yuan S, Chu H, Zhang K, et al. A novel small-molecule compound disrupts influenza A virus PB2 cap-binding and inhibits viral replication. J Antimicrob Chemother. 2016;71(9):2489–2497.
  • Obayashi E, Yoshida H, Kawai F, et al. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature. 2008;454(7208):1127–1131.
  • Sugiyama K, Obayashi E, Kawaguchi A, et al. Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. Embo J. 2009;28(12):1803–1811.
  • Muratore G, Goracci L, Mercorelli B, et al. Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proc Natl Acad Sci U S A. 2012;109(16):6247–6252.
  • Mizuta S, Otaki H, Ishikawa T, et al. Lead Optimization of influenza virus RNA polymerase inhibitors targeting PA-PB1 interaction. J Med Chem. 2022;65(1):369–385.
  • Zhang C, Xiang JJ, Zhao J, et al. Design, synthesis, and biological activity of a novel series of 2-ureidonicotinamide derivatives against influenza A virus. Curr Med Chem. 2022;29(26):4610–4627.
  • Pismataro MC, Felicetti T, Bertagnin C, et al. 1,2,4-Triazolo[1,5-a]pyrimidines: efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur J Med Chem. 2021;221:113494.
  • Yuan S, Chu H, Ye J, et al. Identification of a novel small-molecule compound targeting the influenza A virus polymerase PB1-PB2 interface. Antiviral Res. 2017;137:58–66.
  • Ren Y, Long S, Cao S. Molecular docking and virtual screening of an influenza virus inhibitor that disrupts protein-protein interactions. Viruses. 2021;13(11):2229.
  • Kao RY, Yang D, Lau LS, et al. Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol. 2010;28(6):600–605.
  • Gerritz SW, Cianci C, Kim S, et al. Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proc Natl Acad Sci U S A. 2011;108(37):15366–15371.
  • Huang F, Chen J, Zhang J, et al. Identification of a novel compound targeting the nuclear export of influenza A virus nucleoprotein. J Cell Mol Med. 2018;22(3):1826–1839.
  • Dilly S, Fotso FA, Lejal N, et al. From naproxen repurposing to naproxen analogues and their antiviral activity against influenza A Virus. J Med Chem. 2018;61(16):7202–7217.
  • White KM, Abreu PJ, Wang H, et al. Broad spectrum inhibitor of influenza A and B viruses targeting the viral nucleoprotein. Acs Infect Dis. 2018;4(2):146–157.
  • Yang F, Pang B, Lai KK, et al. Discovery of a novel specific inhibitor targeting influenza a virus nucleoprotein with pleiotropic Inhibitory effects on various steps of the viral life cycle. J Virol. 2021;95(9). DOI:10.1128/JVI.01432-20.
  • Makau JN, Watanabe K, Otaki H, et al. A quinolinone compound inhibiting the oligomerization of nucleoprotein of influenza A virus prevents the selection of escape mutants. Viruses. 2020;12(3):337.
  • Fujimoto Y, Kyogoku K, Takeda K, et al. Antiviral effects against influenza A virus infection by a short hairpin RNA targeting the non-coding terminal region of the viral nucleoprotein gene. J Vet Med Sci. 2019;81(3):383–388.
  • Talon J, Horvath CM, Polley R, et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol. 2000;74(17):7989–7996.
  • Ludwig S, Wang X, Ehrhardt C, et al. The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J Virol. 2002;76(21):11166–11171.
  • Maroto M, Fernandez Y, Ortin J, et al. Development of an HTS assay for the search of anti-influenza agents targeting the interaction of viral RNA with the NS1 protein. J Biomol Screen. 2008;13(7):581–590.
  • Darapaneni V, Prabhaker VK, Kukol A. Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins. J Gen Virol. 2009;90(Pt 9):2124–2133.
  • Pan D, Sun H, Shen Y, et al. Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation. Antiviral Res. 2011;92(3):424–433.
  • Trigueiro-Louro JM, Correia V, Santos LA, et al. To hit or not to hit: large-scale sequence analysis and structure characterization of influenza A NS1 unlocks new antiviral target potential. Virology. 2019;535:297–307.
  • Trigueiro-Louro J, Santos LA, Almeida F, et al. NS1 protein as a novel anti-influenza target: map-and-mutate antiviral rationale reveals new putative druggable hot spots with an important role on viral replication. Virology. 2022;565:106–116.
  • Barman S, You L, Chen R, et al. Exploring naphthyl-carbohydrazides as inhibitors of influenza A viruses. Eur J Med Chem. 2014;71:81–90.
  • Mcmillen CM, Beezhold DH, Blachere FM, et al. Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference. Virology. 2016;497:171–184.
  • Kleinpeter AB, Jureka AS, Falahat SM, et al. Structural analyses reveal the mechanism of inhibition of influenza virus NS1 by two antiviral compounds. J Biol Chem. 2018;293(38):14659–14668.
  • Shi X, Zhou W, Huang H, et al. Inhibition of the inflammatory cytokine tumor necrosis factor-alpha with etanercept provides protection against lethal H1N1 influenza infection in mice. Crit Care. 2013;17(6):R301.
  • Beilharz MW, Cummins JM, Bennett AL. Protection from lethal influenza virus challenge by oral type 1 interferon. Biochem Biophys Res Commun. 2007;355(3):740–744.
  • Kugel D, Kochs G, Obojes K, et al. Intranasal administration of alpha interferon reduces seasonal influenza A virus morbidity in ferrets. J Virol. 2009;83(8):3843–3851.
  • Davidson S, Crotta S, Mccabe TM, et al. Pathogenic potential of interferon αβ in acute influenza infection. Nat Commun. 2014;5:3864.
  • Teijaro JR, Walsh KB, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980–991.
  • Klinkhammer J, Schnepf D, Ye L, et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife. 2018;7 :e33354.
  • Davidson S, Mccabe TM, Crotta S, et al. IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment. Embo Mol Med. 2016;8(9):1099–1112.
  • Carey MA, Bradbury JA, Rebolloso YD, et al. Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice. PLoS One. 2010;5(7):e11610.
  • Search of: celecoxib influenza - List Results - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=+celecoxib+influenza&term=&cntry=&state=&city=&dist=
  • Romanova J, Rydlovskaya A, Mochalov S, et al. The effect of anti-chemokine oral drug XC8 on cough triggered by the agonists of TRPA1 but not TRPV1 channels in guinea pigs. Pulm Ther. 2022;8(1):105–122.
  • Madan A, Chen S, Yates P, et al. Efficacy and Safety of Danirixin (GSK1325756) co-administered with standard-of-care antiviral (oseltamivir): a phase 2b, global, randomized study of adults hospitalized with influenza. Open Forum Infect Dis. 2019;6(4):z163.
  • Shishkina LN, Skarnovich MO, Kabanov AS, et al. Antiviral activity of Anaferon (pediatric formulation) in mice infected with pandemic influenza virus A(H1N1/09). Bull Exp Biol Med. 2010;149(5):612–614.
  • Chibanga VP, Dirr L, Guillon P, et al. New antiviral approaches for human parainfluenza: inhibiting the haemagglutinin-neuraminidase. Antiviral Res. 2019;167:89–97.
  • Search of: DAS181 - List Results - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=DAS181&term=&cntry=&state=&city=&dist=
  • Droebner K, Haasbach E, Dudek SE, et al. Pharmacodynamics, pharmacokinetics, and antiviral activity of BAY 81-8781, a Novel NF-κB inhibiting anti-influenza drug. Front Microbiol. 2017;8:2130.
  • Francesconi V, Giovannini L, Santucci M, et al. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur J Med Chem. 2018;155:229–243.
  • Hamza H, Shehata MM, Mostafa A, et al. Improved in vitro efficacy of baloxavir marboxil against influenza a virus infection by combination treatment with the MEK Inhibitor ATR-002. Front Microbiol. 2021;12:611958.
  • Grohskopf LA, Alyanak E, Broder KR, et al. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices - United States, 2019-20 influenza season. MMWR Recomm Rep. 2019;68(3):1–21.
  • Sabbaghi A, Miri SM, Keshavarz M, et al. Inactivation methods for whole influenza vaccine production. Rev Med Virol. 2019;29(6):e2074.
  • Ainai A, Suzuki T, Tamura SI, et al. Intranasal administration of whole inactivated influenza virus vaccine as a promising influenza vaccine candidate. Viral Immunol. 2017;30(6):451–462.
  • Search of: influenza vaccine - List Results - ClinicalTrials.gov. Available from: https://www.clinicaltrials.gov/ct2/results?cond=influenza+vaccine&term=&cntry=&state=&city=&dist=
  • Wei CJ, Crank MC, Shiver J, et al. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov. 2020;19(4):239–252.
  • Johansson BE, Bucher DJ, Kilbourne ED. Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J Virol. 1989;63(3):1239–1246.
  • Del GG, Fragapane E, Della CG, et al. Aflunov®: a vaccine tailored for pre-pandemic and pandemic approaches against influenza. Expert Opin Biol Ther. 2013;13(1):121–135.
  • Chen J, Wang J, Zhang J, et al. Advances in Development and Application of Influenza Vaccines. Front Immunol. 2021;12:711997.
  • Blanco-Lobo P, Nogales A, Rodríguez L, et al. Novel approaches for the development of live attenuated influenza vaccines. Viruses. 2019;11(2):190.
  • Nogales A, Martínez-Sobrido L. Reverse genetics approaches for the development of influenza vaccines. Int J Mol Sci. 2016;18(1):20.
  • Engelhardt OG. Many ways to make an influenza virus–review of influenza virus reverse genetics methods. Influenza Other Respir Viruses. 2013;7(3):249–256.
  • Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist®; Fluenz™): a review of its use in the prevention of seasonal influenza in children and adults. Drugs. 2011;71(12):1591–1622.
  • Search | FDA. [cited 2022 2022/11/9]Available from: https://www.fda.gov/search?s=FluMist&sort_bef_combine=rel_DESC
  • Sun W, Luo T, Liu W, et al. Progress in the development of universal influenza vaccines. Viruses. 2020;12(9):1033.
  • Soema PC, Kompier R, Amorij JP, et al. Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm. 2015;94:251–263.
  • Yang LP. Recombinant trivalent influenza vaccine (flublok(®)): a review of its use in the prevention of seasonal influenza in adults. Drugs. 2013;73(12):1357–1366.
  • Evans TG, Bussey L, Eagling-Vose E, et al. Efficacy and safety of a universal influenza A vaccine (MVA-NP+M1) in adults when given after seasonal quadrivalent influenza vaccine immunisation (FLU009): a phase 2b, randomised, double-blind trial. Lancet Infect Dis. 2022;22(6):857–866.
  • Swayze H, Allen J, Folegatti P, et al. A phase IIb study to determine the safety and efficacy of candidate influenza vaccine MVA-NP+M1 in combination with licensed inactivated infl uenza vaccine in adult S aged 65 years and above (INVICTUS): a study protocol. F1000Res. 2019;8:719.
  • Mcilwain DR, Chen H, Apkarian M, et al. Performance of BioFire array or QuickVue influenza A + B test versus a validation qPCR assay for detection of influenza A during a volunteer A/California/2009/H1N1 challenge study. Virol J. 2021;18(1):45.
  • van Doorn E, Pleguezuelos O, Liu H, et al. Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial. Bmc Infect Dis. 2017;17(1):241.
  • Pleguezuelos O, Dille J, de Groen S, et al. Immunogenicity, safety, and efficacy of a standalone universal influenza vaccine, flu-v, in healthy adults: a randomized clinical trial. Ann Intern Med. 2020;172(7):453–462.
  • Govorkova EA, Takashita E, Daniels RS, et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018-2020. Antiviral Res. 2022;200:105281.
  • Sun H, Xiao Y, Liu J, et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc Natl Acad Sci U S A. 2020;117(29):17204–17210.
  • Madsen A, Cox RJ. Prospects and Challenges in the Development of Universal Influenza Vaccines. Vaccines (Basel). 2020;8(3):548.
  • Wakabayashi T, Nakatsuji T, Kambara H, et al. Drug-induced neuropsychiatric adverse events using post-marketing surveillance. Curr Rev Clin Exp Pharmacol. 2022;17(2):144–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.