2,384
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging peptide therapeutics for the treatment of ovarian cancer

ORCID Icon, ORCID Icon & ORCID Icon
Pages 129-144 | Received 15 Mar 2023, Accepted 23 May 2023, Published online: 07 Jun 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.
  • Salazar C, Campbell IG, Gorringe KL. When is “Type I” ovarian cancer not “Type I”? Indications of an outdated dichotomy. Front Oncol. 2018;8:654.
  • Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24:x16–x21.
  • Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–296.
  • Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–615. doi: 10.1038/nature10166.
  • Shah S, Cheung A, Kutka M, et al. Epithelial ovarian cancer: providing evidence of predisposition genes. Int J Environ Res Public Health. 2022;19:8113.
  • Moschetta M, Boussios S, Rassy E, et al. Neoadjuvant treatment for newly diagnosed advanced ovarian cancer: where do we stand and where are we going? Ann Transl Med. 2020;8:1710–1710.
  • Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer. Lancet. 2019;393:1240–1253.
  • Tew WP, Lacchetti C, Ellis A, et al. PARP inhibitors in the management of ovarian cancer: aSCO guideline. J Clin Oncol. 2020;38:3468–3493.
  • Boussios S, Rassy E, Moschetta M, et al. BRCA mutations in ovarian and prostate cancer: bench to bedside. Cancers. 2022;14:3888.
  • Kwon YW, Jo H-S, Bae S, et al. Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front Med. 2021;8:747333.
  • Wang X, Li S. Protein mislocalization: mechanisms, functions and clinical applications in cancer. Biochim Biophys Acta BBA - Rev Cancer. 2014;1846:13–25.
  • Karami Fath M, Babakhaniyan K, Zokaei M, et al. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett. 2022;27:33.
  • Boohaker R J, Lee M W, Vishnubhotla P, et al. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19:3794–3804.
  • Li CM, Haratipour P, Lingeman RG, et al. Novel peptide therapeutic approaches for cancer treatment. Cells. 2021;10:2908.
  • Hagimori M, Fuchigami Y, Kawakami S. Peptide-based cancer-targeted DDS and molecular imaging. Chem Pharm Bull (Tokyo). 2017;65:618–624.
  • Veneziani A, Lheureux S, Alqaisi H, et al. Pembrolizumab, maveropepimut-S, and low-dose cyclophosphamide in advanced epithelial ovarian cancer: results from phase 1 and expansion cohort of PESCO trial. J Clin Oncol. 2022;40:5505–5505.
  • Moore KN, Vergote I, Oaknin A, et al. FORWARD I: a Phase III study of mirvetuximab soravtansine versus chemotherapy in platinum-resistant ovarian cancer. Future Oncol. 2018;14:1669–1678.
  • Yeku OO, Rao TD, Laster I, et al. Bispecific T-Cell engaging antibodies against MUC16 demonstrate efficacy against ovarian cancer in monotherapy and in combination with PD-1 and VEGF inhibition. Front Immunol. 2021;12:663379.
  • Schoutrop E, El-Serafi I, Poiret T, et al. Mesothelin-specific CAR T cells target ovarian cancer. Cancer Res. 2021;81:3022–3035.
  • Wilson MK, Pujade-Lauraine E, Aoki D, et al. Fifth ovarian cancer consensus conference of the gynecologic cancer InterGroup: recurrent disease. Ann Oncol. 2017;28:727–732.
  • Vergote I, Gonzalez-Martin A, Lorusso D, et al. Clinical research in ovarian cancer: consensus recommendations from the gynecologic cancer InterGroup. Lancet Oncol. 2022;23:e374–e384.
  • Ghose A, Gullapalli SVN, Chohan N, et al. Applications of proteomics in ovarian cancer: dawn of a new era. Proteomes. 2022;10:16.
  • Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–2483.
  • Perren TJ, Swart AM, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365:2484–2496.
  • Foo T, George A, Banerjee S. PARP inhibitors in ovarian cancer: an overview of the practice‐changing trials. Genes Chromosomes Cancer. 2021;60:385–397.
  • Tinker AV, Altman AD, Bernardini MQ, et al. A pan-Canadian consensus statement on first-line PARP inhibitor maintenance for advanced, high-grade serous and endometrioid tubal, ovarian, and primary peritoneal cancers. Curr Oncol. 2022;29:4354–4369.
  • Mirza MR, Coleman RL, González-Martín A, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann Oncol. 2020;31:1148–1159.
  • González-Martín A, Pothuri B, Vergote I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381:2391–2402.
  • Gonzalez Martin AJ, Pothuri B, Vergote IB, et al. 530P PRIMA/ENGOT-OV26/GOG-3012 study: updated long-term PFS and safety. Ann Oncol. 2022;33:S789.
  • DiSilvestro P, Banerjee S, Colombo N, et al. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: the SOLO1/GOG 3004 trial. J Clin Oncol. 2022;41(3):609–617. DOI:10.1200/JCO.22.01549
  • Ray-Coquard IL, Leary A, Pignata S, et al. LBA29 Final overall survival (OS) results from the phase III PAOLA-1/ENGOT-ov25 trial evaluating maintenance olaparib (ola) plus bevacizumab (bev) in patients (pts) with newly diagnosed advanced ovarian cancer (AOC). Ann Oncol. 2022;33:S1396–S1397.
  • Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol. 2014;32:1302–1308.
  • Lheureux S, Braunstein M, Oza AM Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69:280–304.
  • Veneziani AC, Oza AM. Taking the road less traveled: following molecular trail markers. Clin Cancer Res. 2022;28:4357–4359.
  • Monk BJ, Grisham RN, Banerjee S, et al. MILO/ENGOT-ov11: binimetinib versus physician’s choice chemotherapy in recurrent or persistent low-grade serous carcinomas of the ovary, fallopian tube, or primary peritoneum. J Clin Oncol. 2020;38:3753–3762.
  • Gershenson DM, Miller A, Brady WE, et al. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): an international, randomised, open-label, multicentre, phase 2/3 trial. Lancet. 2022;399:541–553.
  • Zhu C, Xu Z, Zhang T, et al. Updates of pathogenesis, diagnostic and therapeutic perspectives for ovarian clear cell carcinoma. J Cancer. 2021;12:2295–2316.
  • Samartzis EP, Labidi-Galy SI, Moschetta M, et al. Endometriosis-associated ovarian carcinomas: insights into pathogenesis, diagnostics, and therapeutic targets—a narrative review. Ann Transl Med. 2020;8:1712–1712.
  • Gore ME, Hackshaw A, Brady WE, et al. Multicentre trial of carboplatin/paclitaxel versus oxaliplatin/capecitabine, each with/without bevacizumab, as first line chemotherapy for patients with mucinous epithelial ovarian cancer (mEOC). J Clin Oncol. 2015;33:5528–5528.
  • Grossman M, Adler E. Protein kinase inhibitors - selectivity or toxicity? In: Kumar Singh R, editor. Biochemistry [Internet]. IntechOpen; 2021. [cited 2023 Jan 11. doi: 10.5772/intechopen.98640
  • Li K, Liu C-J, Zhang X-Z. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev. 2020;160:36–51.
  • Komin A, Russell LM, Hristova KA, et al. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv Drug Deliv Rev. 2017;110–111:52–64.
  • Davenport AP, Scully CCG, de Graaf C, et al. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov. 2020;19:389–413.
  • Zhang L, Huang Y, Lindstrom AR, et al. Peptide-based materials for cancer immunotherapy. Theranostics. 2019;9:7807–7825.
  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:eaan2507.
  • Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–5337.
  • León-Letelier RA, Katayama H, Hanash S. Mining the immunopeptidome for antigenic peptides in cancer. Cancers. 2022;14:4968.
  • Tanyi JL, Randall LM, Chambers SK, et al. A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor–positive ovarian cancer (Study 006). J Clin Oncol Off J Am Soc Clin Oncol. 2022;41(2):276–284. JCO2200291. doi:10.1200/JCO.22.00291.
  • Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol. 2021;12:696791.
  • Cooper BM, Iegre J, O’ Donovan DH, et al. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem Soc Rev. 2021;50:1480–1494.
  • Klampatsa A, Dimou V, Albelda SM. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther. 2021;21:473–486.
  • Kumai T, Kobayashi H, Harabuchi Y, et al. Peptide vaccines in cancer — old concept revisited. Curr Opin Immunol. 2017;45:1–7.
  • Smith MC, Gestwicki JE. Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med. 2012;14:e16.
  • Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–344.
  • Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody–drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 2022;72:165–182.
  • Met Ö, Jensen KM, Chamberlain CA, et al. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. 2019;41:49–58.
  • Sarivalasis A, Morotti M, Mulvey A, et al. Cell therapies in ovarian cancer. Ther Adv Med Oncol. 2021;13:175883592110083.
  • JWY W, Dand S, Doig L, et al. T-Cell receptor therapy in the treatment of ovarian cancer: a mini review. Front Immunol. 2021;12:672502.
  • Deng J, Wang L, Chen H, et al. The role of tumour-associated MUC1 in epithelial ovarian cancer metastasis and progression. Cancer Metastasis Rev. 2013;32:535–551.
  • Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.
  • Lee D-H, Choi S, Park Y, et al. Mucin1 and Mucin16: therapeutic targets for cancer therapy. Pharmaceuticals. 2021;14:1053.
  • Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell. 2005;7:167–178.
  • Ledermann JA, Zurawski B, Raspagliesi F, et al. Maintenance therapy of patients with recurrent epithelial ovarian carcinoma with the anti-tumor-associated-mucin-1 antibody gatipotuzumab: results from a double-blind, placebo-controlled, randomized, phase II study. ESMO Open. 2022;7:100311.
  • Das S, Majhi PD, Al-Mugotir MH, et al. Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifyingGolgi/post-Golgi compartments. Sci Rep. 2015;5:9759.
  • Brewer M, Angioli R, Scambia G, et al. Front-line chemo-immunotherapy with carboplatin-paclitaxel using oregovomab indirect immunization in advanced ovarian cancer: a randomized phase II study. Gynecol Oncol. 2020;156:523–529.
  • Liu JF, Moore KN, Wang JS, et al. Abstract CT009: targeting MUC16 with the THIOMABTM-drug conjugate DMUC4064A in patients with platinum-resistant ovarian cancer: a Phase I escalation study. Cancer Res. 2017;77:CT009–CT009.
  • Koneru M, O’Cearbhaill R, Pendharkar S, et al. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16ecto directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med. 2015;13:102.
  • Chen X, Duan N, Zhang C, et al. Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer. 2016;7:314–323.
  • Garg H, Suri P, Gupta JC, et al. Survivin: a unique target for tumor therapy. Cancer Cell Int. 2016;16:49.
  • Li F. Role of survivin and its splice variants in tumorigenesis. Br J Cancer. 2005;92:212–216.
  • Fenstermaker RA, Figel SA, Qiu J, et al. Survivin monoclonal antibodies detect survivin cell surface expression and inhibit tumor growth in vivo. Clin Cancer Res. 2018;24:2642–2652.
  • Vermeij R, Daemen T, de Bock GH, et al. Potential target antigens for a universal vaccine in epithelial ovarian cancer. Clin Dev Immunol. 2010;2010:891505.
  • Cohen C, Lohmann CM, Cotsonis G, et al. Survivin expression in ovarian carcinoma: correlation with apoptotic markers and prognosis. Mod Pathol. 2003;16:574–583.
  • Hattori M, Sakamoto H, Satoh K, et al. DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett. 2001;169:155–164.
  • Berinstein NL, Karkada M, Oza AM, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529.
  • Dorigo O, Fiset S, MacDonald LD, et al. DPX-Survivac, a novel T-cell immunotherapy, to induce robust T-cell responses in advanced ovarian cancer. J Clin Oncol. 2020;38:6–6.
  • Scaranti M, Cojocaru E, Banerjee S, et al. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17:349–359.
  • Ledermann JA, Canevari S, Thigpen T. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol. 2015;26:2034–2043.
  • Kalli KR, Oberg AL, Keeney GL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108:619–626.
  • Konner JA, Bell-McGuinn KM, Sabbatini P, et al. Farletuzumab, a humanized monoclonal antibody against folate receptor α, in epithelial ovarian cancer: a phase I study. Clin Cancer Res. 2010;16:5288–5295.
  • Armstrong DK, White AJ, Weil SC, et al. Farletuzumab (a monoclonal antibody against folate receptor alpha) in relapsed platinum-sensitive ovarian cancer. Gynecol Oncol. 2013;129:452–458.
  • Vergote I, Armstrong D, Scambia G, et al. A randomized, double-blind, placebo-controlled, phase III study to assess efficacy and safety of weekly farletuzumab in combination with carboplatin and taxane in patients with ovarian cancer in first platinum-sensitive relapse. J Clin Oncol. 2016;34:2271–2278.
  • Herzog TJ, Pignata S, Ghamande S, et al. A randomized, double-blind, placebo-controlled, phase II study to assess the efficacy/safety of farletuzumab in combination with carboplatin plus paclitaxel or carboplatin plus pegylated liposomal doxorubicin (PLD) in women with low CA125 pl. Presented at: 2021 SGO Virtual Annual Meeting on Women’s Cancer; Mar 19-21, 2021; Virtual. Accessed Mar 23, 2021.
  • Nishio S, Yunokawa M, Matsumoto K, et al. Safety and efficacy of MORAb-202 in patients (pts) with platinum-resistant ovarian cancer (PROC): results from the expansion part of a phase 1 trial. J Clin Oncol. 2022;40:5513–5513.
  • Ab O, Whiteman KR, Bartle LM, et al. IMGN853, a Folate Receptor-α (FRα)–targeting antibody–drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol Cancer Ther. 2015;14:1605–1613.
  • Moore KN, Borghaei H, O’Malley DM, et al. Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor α-targeting antibody-drug conjugate, in patients with solid tumors: mirvetuximab soravtansine phase 1 study. Cancer. 2017;123:3080–3087.
  • Moore KN, Martin LP, O’Malley DM, et al. Safety and Activity of Mirvetuximab Soravtansine (IMGN853), a folate receptor alpha–targeting antibody–drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study. J Clin Oncol. 2017;35:1112–1118.
  • Moore K, Oza A, Colombo N, et al. FORWARD I (GOG 3011): a phase III study of mirvetuximab soravtansine, a folate receptor alpha (FRa)-targeting antibody-drug conjugate (ADC), versus chemotherapy in patients (pts) with platinum-resistant ovarian cancer (PROC). Ann Oncol. 2019;30:v403.
  • Moore KN, Oza AM, Colombo N, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol. 2021;32:757–765.
  • Moore KN, Van Gorp T, Wang J, et al. MIRASOL (GOG 3045/ENGOT OV-55): a randomized, open-label, phase III study of mirvetuximab soravtansine versus investigator’s choice of chemotherapy in advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate-alpha (FRα) expression. J Clin Oncol. 2020;38:TPS6103–TPS6103.
  • ELAHERE® demonstrates overall survival benefit in the phase 3 MIRASOL trial in patients with FRα-positive platinum-resistant ovarian cancer. News release. ImmunoGen. 2023.
  • Matulonis UA, Oaknin A, Pignata S, et al. Mirvetuximab soravtansine (MIRV) in patients with platinum-resistant ovarian cancer with high folate receptor alpha (FRα) expression: characterization of antitumor activity in the SORAYA study. J Clin Oncol. 2022;40:5512–5512.
  • O’Malley DM, Matulonis UA, Birrer MJ, et al. Mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients (pts) with platinum-resistant ovarian cancer: final findings from the FORWARD II study. J Clin Oncol. 2019;37:5520–5520.
  • Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12:6106–6115.
  • Wing A, Fajardo CA, Posey AD, et al. Improving CART-Cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res. 2018;6:605–616.
  • Bobko AA, Eubank TD, Driesschaert B, et al. Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci Rep. 2017;7:41233.
  • Kiyamova R, Shyian M, Lyzogubov VV, et al. Immunohistochemical analysis of NaPi2b protein (MX35 antigen) expression and subcellular localization in human normal and cancer tissues. Exp Oncol. 2011;33:157–161.
  • Gerber DE, Infante JR, Gordon MS, et al. Phase Ia study of anti-NaPi2b antibody–drug conjugate lifastuzumab vedotin DNIB0600A in patients with non–small cell lung cancer and platinum-resistant ovarian cancer. Clin Cancer Res. 2020;26:364–372.
  • Banerjee S, Oza AM, Birrer MJ, et al. Anti-NaPi2b antibody–drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann Oncol. 2018;29:917–923.
  • Yurkovetskiy AV, Bodyak ND, Yin M, et al. Dolaflexin: a novel antibody–drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol Cancer Ther. 2021;20:885–895.
  • Concin N, Hamilton E, Randall L, et al. 184 UPLIFT (ENGOT-ov67/GOG-3048) a pivotal cohort of upifitamab rilsodotin, a NaPi2b-directed ADC in platinum-resistant ovarian cancer. Ovarian Cancer. 2021:A205.1–A205. cited 2022 Oct 17. InternetBMJ Publishing Group LtdAvailable from: https://ijgc.bmj.com/lookup/doi/10.1136/ijgc-2021-ESGO.351
  • Richardson DL, Barve MA, Strauss JF, et al. Phase I expansion study of XMT-1536, a novel NaPi2b-targeting antibody-drug conjugate (ADC): preliminary efficacy, safety, and biomarker results in patients with previously treated metastatic ovarian cancer (OC) or non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38:3549–3549.
  • Hassan R, Kreitman RJ, Pastan I, et al. Localization of mesothelin in epithelial ovarian cancer. Appl Immunohistochem Mol Morphol. 2005;13:243–247.
  • Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014;74:2907–2912.
  • Jirsova K, Neuwirth A, Kalasova S, et al. Mesothelial proteins are expressed in the human cornea. Exp Eye Res. 2010;91:623–629.
  • Lee EK, Liu JF. Antibody-drug conjugates in gynecologic malignancies. Gynecol Oncol. 2019;153:694–702.
  • Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279:9190–9198.
  • Hassan R, Blumenschein GR, Moore KN, et al. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody–drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J Clin Oncol. 2020;38:1824–1835.
  • Bulat I, Moore KN, Haceatrean A, et al. Phase Ib study of anti-mesothelin antibody drug conjugate anetumab ravtansine in combination with pegylated liposomal doxorubicin in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J Clin Oncol. 2018;36:5571–5571.
  • Lheureux S, Alqaisi H, Cohn DE, et al. A randomized phase II study of bevacizumab and weekly anetumab ravtansine or weekly paclitaxel in platinum-resistant or refractory ovarian cancer NCI trial#10150. J Clin Oncol. 2022;40:5514–5514.
  • Clarke J, Chu S-C, Siu LL, et al. Abstract B057: bms-986148, an anti-mesothelin antibody-drug conjugate (ADC), alone or in combination with nivolumab demonstrates clinical activity in patients with select advanced solid tumors. Mol Cancer Ther. 2019;18:B057–B057.
  • Rottey S, Clarke J, Aung K, et al. Phase I/IIa Trial of BMS-986148, an anti-mesothelin antibody–drug conjugate, alone or in combination with nivolumab in patients with advanced solid tumors. Clin Cancer Res. 2022;28:95–105.
  • Hassan R, Ebel W, Routhier EL, et al. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun. 2007;7:20.
  • Hassan R, Schweizer C, Lu KF, et al. Inhibition of mesothelin–CA-125 interaction in patients with mesothelioma by the anti-mesothelin monoclonal antibody MORAb-009: implications for cancer therapy. Lung Cancer. 2010;68:455–459.
  • Hassan R, Cohen SJ, Phillips M, et al. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res. 2010;16:6132–6138.
  • Chen Y-L, Chang M-C, Chiang Y-C, et al. Immuno-modulators enhance antigen-specific immunity and anti-tumor effects of mesothelin-specific chimeric DNA vaccine through promoting DC maturation. Cancer Lett. 2018;425:152–163.
  • Haas AR, Tanyi JL, O’Hara MH, et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther. 2019;27:1919–1929.
  • Chen J, Hu J, Gu L, et al. Anti-mesothelin CAR-T immunotherapy in patients with ovarian cancer. Cancer Immunol Immunother. 2022. cited 2022 Oct 17. Available from https://link.springer.com/10.1007/s00262-022-03238-w
  • Yi M, Niu M, Xu L, et al. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol OncolJ Hematol Oncol. 2021;14:10.
  • Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–326.
  • Zhu J, Yan L, Wang Q. Efficacy of PD-1/PD-L1 inhibitors in ovarian cancer: a single-arm meta-analysis. J Ovarian Res. 2021;14:112.
  • Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer. 2022;22:640–656.
  • Buckanovich RJ, Facciabene A, Kim S, et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med. 2008;14:28–36.
  • Revythis A, Limbu A, Mikropoulos C, et al. Recent insights into PARP and immuno-checkpoint inhibitors in epithelial ovarian cancer. Int J Environ Res Public Health. 2022;19:8577.
  • Drew Y, Penson RT, O’Malley DM, et al. 814MO Phase II study of olaparib (O) plus durvalumab (D) and bevacizumab (B) (MEDIOLA): initial results in patients (pts) with non-germline BRCA-mutated (non-gBrcam) platinum sensitive relapsed (PSR) ovarian cancer (OC). Ann Oncol. 2020;31:S615–S616.
  • Trerotola M, Cantanelli P, Guerra E, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32:222–233.
  • Perrone E, Lopez S, Zeybek B, et al. Preclinical activity of sacituzumab govitecan, an antibody-drug conjugate targeting trophoblast cell-surface antigen 2 (Trop-2) linked to the active metabolite of irinotecan (SN-38), in ovarian cancer. Front Oncol. 2020;10:118.
  • Ocean AJ, Starodub AN, Bardia A, et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: safety and pharmacokinetics: safety and Pharmacokinetics of IMMU-132. Cancer. 2017;123:3843–3854.
  • Yap TA, Hamilton E, Bauer T, et al. Phase Ib SEASTAR study: combining rucaparib and sacituzumab govitecan in patients with cancer with or without mutations in homologous recombination repair genes. JCO Precis Oncol. 2022;6:e2100456.
  • Liu X, Deng J, Yuan Y, et al. Advances in Trop2-targeted therapy: novel agents and opportunities beyond breast cancer. Pharmacol Ther. 2022;239:108296.
  • Szender JB, Papanicolau-Sengos A, Eng KH, et al. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol Oncol. 2017;145:420–425.
  • Odunsi K, Qian F, Matsuzaki J, et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci. 2007;104:12837–12842.
  • Odunsi K, Matsuzaki J, James SR, et al. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res. 2014;2:37–49.
  • Odunsi K, Matsuzaki J, Karbach J, et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci. 2012;109:5797–5802.
  • Thomas R, Al-Khadairi G, Roelands J, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947.
  • Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 — from biology to targeted therapy. Nat Rev Clin Oncol. 2021;18:152–169.
  • Chen Y, Camacho SC, Silvers TR, et al. Inhibition of the nuclear export receptor XPO1 as a therapeutic target for platinum-resistant ovarian cancer. Clin Cancer Res. 2017;23:1552–1563.
  • Makker V, Perez-Fidalgo JA, Bergamini A, et al. Randomized phase III study of maintenance selinexor versus placebo in endometrial cancer (ENGOT-EN5/GOG-3055/SIENDO): impact of subgroup analysis and molecular classification. J Clin Oncol. 2022;40:5511–5511.
  • Vergote IB, Lund B, Peen U, et al. Phase 2 study of the Exportin 1 inhibitor selinexor in patients with recurrent gynecological malignancies. Gynecol Oncol. 2020;156:308–314.
  • Marijon H, Gery S, Elloul S, et al. Abstract LB-255: selinexor, a selective inhibitor of nuclear export (SINE) compound, shows enhanced antitumor activity in combination with the PARP inhibitor, olaparib, in models of triple-negative breast cancer. Cancer Res. 2015;75:LB-255-LB–255.
  • Alzahrani A, Natarajan U, Rathinavelu A. Enhancement of MDM2 inhibitory effects through blocking nuclear export mechanisms in ovarian cancer cells. Cancer Genet. 2022;266–267:57–68.
  • Giugliano F, Corti C, Tarantino P, et al. Bystander effect of antibody–drug conjugates: fact or fiction? Curr Oncol Rep. 2022;24:809–817.
  • Martin LP, Konner JA, Moore KN, et al. Characterization of folate receptor alpha (FRα) expression in archival tumor and biopsy samples from relapsed epithelial ovarian cancer patients: a phase I expansion study of the FRα-targeting antibody-drug conjugate mirvetuximab soravtansine. Gynecol Oncol. 2017;147:402–407.
  • Boonstra MC, De Geus SWL, Prevoo HAJM, et al. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomark Cancer. 2016;8:BIC.S38542.
  • Despierre E, Lambrechts S, Leunen K, et al. Folate receptor alpha (FRA) expression remains unchanged in epithelial ovarian and endometrial cancer after chemotherapy. Gynecol Oncol. 2013;130:192–199.
  • Borden ES, Buetow KH, Wilson MA, et al. Cancer neoantigens: challenges and future directions for prediction, prioritization, and validation. Front Oncol. 2022;12:836821.
  • Yan W, Hu H, Tang B. Advances of chimeric antigen receptor t cell therapy in ovarian cancer. Oncol Targets Ther. 2019;12:8015–8022.