408
Views
10
CrossRef citations to date
0
Altmetric
Review

MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure

, &
Pages 1287-1300 | Received 07 Oct 2015, Accepted 08 Jul 2016, Published online: 25 Jul 2016

References

  • Braunwald E The pathogenesis of congestive heart failure. Medicine. 1991. 70:68–79.
  • Opie LH, Commerford PJ, Gersh BJ, et al. Controversies in ventricular remodelling Lancet. 2006 Jan 28; 367(9507):356–367.
  • Sallin P, Jaźwińska A. γ-tubulin is differentially expressed in mitotic and non-mitotic cardiomyocytes in the regenerating zebrafish heart. Data Brief 2015 Feb 10;3:71–77.
  • Zhang W, Elimban V, Nijjar MS et al. Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol. 2003 Winter;8(4):173–183.
  • Sugden PH, Clerk A Cellular mechanisms of cardiac hypertrophy. J Mol Med (Berl) 1998 Oct; 76(11):725–746.
  • Heineke J, Molkentin JD Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006 Aug; 7(8):589–600.
  • Matsuda T1, Zhai P, Maejima Y et al. Distinct roles of GSK-3alpha and GSK-3beta phosphorylation in the heart under pressure overload. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20900–20905
  • Katz MG, Fargnoli AS, Kendle AP, et al. The Role of microRNAs in Cardiac Development and Regenerative Capacity. Am J Physiol Heart Circ Physiol. 2016 Mar;310(5):H528–541.
  • Anand IS, Fisher LD, Chiang YT et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality in the valsartan heart failure trial (Val‐HeFT). Circulation 2003;11;107(9):1278–1283.
  • Omland T, Aakvaag A, Bonarjee VVS et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and longterm survival after myocadial infarction. Comparison with plasma atrial natriuretic peptide and N‐terminal proatrial natriuretic peptide. Circulation 1996 Jun 1;93(11):1963–1969.
  • Volpe M, Rubattu S, Burnett J Jr. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J 2014; 35: 419–425.
  • Colucci WS, Elkayam U, Horton DP, et al.; Nesiritide Study Group. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. N Engl J Med 2000; 343: 246–253.
  • O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 2011; 365: 32–43.
  • Ando S, Rahman MA, Butler GC, et al. Comparison of candoxatril and atrial natriuretic factor in healthy men: effects on hemodynamics, sympathetic activity, heart rate variability, and endothelin. Hypertension 1995; 26: 1160–1166.
  • Bevan EG, Connell JM, Doyle J, et al. Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J Hypertens 1992; 10: 607–613.
  • Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: The Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens 2004; 17: 103–111.
  • Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE).Circulation 2002; 106: 920–926;
  • Rouleau JL, Pfeffer MA, Stewart DJ, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet 2000; 356: 615–620.
  • Ruilope LM, Dukat A, BöhmBohm M, et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 2010; 375: 1255–1266.
  • Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 doubleblind randomised controlled trial. Lancet 2012; 380: 1387–1395.
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371: 993–1004.
  • Suwa M, Seino Y, Nomachi Y, et al. Multicenter prospective investigation on efficacy and safety of carperitide for acute heart failure in the `Real World‘ of therapy. Circ J 2005; 69: 283–290.
  • McKie PM, Sangaralingham SJ, Burnett JC Jr. CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr Heart Fail Rep 2010; 7: 93–99.
  • Brown KM, Tracy DK Lithium: the pharmacodynamic actions of the amazing ion. Ther Adv Psychopharmacol. 2013 Jun;3(3):163–176; Front Mol Neurosci. 2012 Feb 20;5: 14.
  • Robertson JK, Danzmann K, Charles S et al. Targeting the Wnt pathway in zebrafish as a screening method to identify novel therapeutic compounds. Exp Biol Med (Maywood). 2014 Feb;239(2):169–7.
  • Lal H, Ahmad F, Woodgett J, et al. The GSK-3 family as therapeutic target for myocardial diseases. Circ Res 2015 Jan 2;116(1):138–149.
  • Ahmad F, Lal H, Zhou J, et al. Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure. J Am Coll Cardiol. 2014 Aug 19;64(7):696–706.
  • Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21–28;378(6559):785–789.
  • Rees ML, Subramaniam J, Li Y et al. A PKM2 signature in the failing heart. Biochem Biophys Res Commun. 2015 Apr 10;459(3):430–436
  • Baurand A, Zelarayan L, Betney R et al. Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res. 2007 May 11; 100(9):1353–1362
  • Sutherland C1, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993 Nov 15;296 (Pt 1):15–19.
  • Swain JE1, Ding J, Brautigan DL, et al. Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity. Biol Reprod. 2007 Apr;76(4):628–638.
  • Monteiro da Rocha A, Ding J, Slawny N, et al. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction. Biol Reprod. 2015 May;92(5):127.
  • Morisco C, Seta K, Hardt SE, et al. Glycogen synthase kinase 3β regulates GATA4 in cardiac myocytes. J Biol Chem. 2001;276:28586–28597.
  • Zhai P, Gao S, Holle E, et al. Glycogen synthase kinase-3α reduces cardiac growth and pressure overload-induced cardiac hypertrophy by inhibition of extracellular signal regulated kinases. J Biol Chem. 2007;282:33181–33191
  • Hoehn M, Zhang Y, Xu J, et al. Overexpression of protein phosphatase 2A in a murine model of chronic myocardial infarction leads to increased adverse remodeling but restores the regulation of β-catenin by glycogen synthase kinase 3β. Int J Cardiol. 2015 Mar 15;183:39–4.
  • Zhang B, Turdi S, Li Q, et al. Cardiac overexpression of insulin-like growth factor 1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction but not hypertrophy: roles of Akt, mTOR, GSK3beta, and PTEN. Free Radic Biol Med. 2010 Oct 15;49(7):1238–1253.
  • Haq S, Choukroun G, Lim H, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001;103:670–677.
  • Haq S, Michael A, Andreucci M, et al. Stabilization of β-catenin by a Wnt-independent mechanism regulates cardiac myocyte growth. Proc Natl Acad Sci USA 2003;100:4610–4615.
  • Michael A, Haq S, Chen X, et al. Glycogen synthase kinase-3β regulates growth, calcium homeostasis, and diastolic functions in the heart. J Biol Chem 2004;279:21383–21393.
  • Hirotani S, Zhai P, Tomita H, et al. Inhibition of glycogen synthase 3β during heart failure is protective. Circ Res 2007;101:1164–1174.
  • Tseng A-S, Engel FB, Keating MT, et al.3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 2006;13:957–963.
  • Cohen P The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 2006;7:867–873
  • Sanbe A, Gulick J, Hanks MC, et al. Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res 2003;92:609–616.
  • Schulte C, Westermann D, Blankenberg S, et al.Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction.World J Cardiol 2015 Dec 26;7(12):843–860.
  • Ono KmicroRNAs and Cardiovascular Remodeling.Adv Exp Med Biol 2015;888:197–213.
  • Gnecchi M, Pisano F, Bariani RmicroRNA and Cardiac Regeneration.Adv Exp Med Biol 2015;887:119–141.
  • Bernardo BC, Gao XM, Tham YK et al. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS One. 2014 Feb 27;9(2):e90337.
  • Chiromatzo AO, Oliveira TY, Pereira G et al. JrmiRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res. 2007 Oct 5;6(4):859–6.
  • Ucar A, Gupta SK, Fiedler J, et al., Thum TThe miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012;3:1078.
  • Paulin R, Sutendra G, Gurtu V, et al.A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension.Circ Res 2015 Jan 2;116(1):56–69.
  • Zhai C, Tang G, Peng L, et al., Zhang X Inhibition of microRNA-1 attenuates hypoxia/re-oxygenation-induced apoptosis of cardiomyocytes by directly targeting Bcl-2 but not GADD45Beta. Am J Transl Res 2015 Oct 15;7(10):1952–1956.
  • Wahlquist C, Jeong D, Rojas-Muñoz A, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508:531–535.
  • Da Costa Martins PA1, Salic K, Gladka MM, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010 Dec;12(12):1220–1227.
  • Oliveira LH, Schiavinato JL, Fráguas MS et al. Potential Roles of miR-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 2015 Aug 6. doi:10.1111/cas.12766. [Epub ahead of print]. 106 1264–1277
  • Da Silva ND Jr, Fernandes T, Soci UP et al. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc 2012; 44(8), 1453–1462.
  • Aurora AB, Mahmoud AI, Luo X et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death. J Clin Invest. 2012 Apr;122(4):1222–1232.
  • Carè A, Catalucci D, Felicetti F et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007 May;13(5):613–618.
  • Castaldi A, Zaglia T, Di Mauro V, et al. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade.Circ Res 2014 Jul 7;115(2):273–278.
  • Kumarswamy R, Volkmann I, Jazbutyte V et al. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):361–369.
  • Bonauer A, Carmona G, Iwasaki M et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009 Jun 26;324(5935):1710–1713
  • Porrello ER, Johnson BA, Aurora AB et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011; 109(6), 670–679
  • Ooi JY, Bernardo BC, McMullen JRThe therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem 2014 6(2), 205–222.
  • Boon RA, Iekushi K, Lechner S et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013 Mar 7;495(7439):107–1
  • Dirkx E, Gladka MM, Philippen LE, et al.Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure.Nat Cell Biol 2013 Nov;15(11):1282–1293.
  • Chatzifrangkeskou M, Muchir A. Extracellular signal-Regulated Kinases 1/2 and their role in cardiac diseases. Sci Proceedings 2015; 2: e457.doi:10.14800/sp.457
  • Zhang W, Elimban V, Nijjar MS, et al. Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol. 2003 Winter; 8(4):173–183.
  • Barajas-Espinosa A, Basye A, Angelos MG et al. Modulation of p38 kinase by DUSP4 Is important in regulating cardiovascular function under oxidative stress. Free Radical Biol Med . 2015 Dec;89:170–181.
  • Nakamura T, Gulick J, Pratt R et al. Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15436–15441.
  • Wu X, Yin J, Simpson J et al. Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants. Mol Cell Biol. 2012 Oct;32(19):3872–3890.
  • Muchir A, Pavlidis P, Bonne G et al. Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy. Hum Mol Genet. 2007 Aug 1;16(15):1884–1895.
  • Zhang LS, Wang YJ, Ju YY et al. Role for engagement of β-arrestin 2 by the transactivated EGFR in agonist-specific regulation of δ receptor activation of ERK1/2. Br J Pharmacol. 2015 Jul 25. doi:10.1111/bph.13254. 172 4847–4863
  • Yamazaki T, Komuro I, Kudoh S et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res. 1995 Aug;77(2):258–265.
  • Peng K, Tian X, Qian Y, et al. NovelEGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016 Mar;20(3):482–494.
  • Illario M, Cavallo AL, Bayer KU, et al. Calcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation. J Biol Chem 2003 Nov 14; 278(46):45101–45108.
  • Cipolletta E, Monaco S, Maione AS, et al. Calmodulin-dependent kinase II mediates vascular smooth muscle cell proliferation and is potentiated by extracellular signal regulated kinase. Endocrinology 2010 Jun; 151(6):2747–2759.
  • Liu YL, Huang CC, Chang CC, et al. Hyperphosphate-induced myocardial hypertrophy through the GATA-4/NFAT-3 signaling pathway is attenuated by ERK inhibitor treatment. Cardiorenal Med. 2015 Apr;5(2):79–88.
  • Aikawa R, Komuro I, Yamazaki T, et al.Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res. 1999;84:458–466.
  • Zong J, Zhang DP, Zhou H, et al.Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling. J Cell Biochem. 2013 May;114(5):1058–1065
  • Rohrer DK, Desai KH, Jasper JR et al. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci. 1996; 93: 7375–7380.
  • Chesley A, Lundberg MS, Asai T et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3’-kinase. Circ Res. 2000 Dec 8;87(12):1172–1179.
  • Dorn GW MicroRNAs in cardiac disease. 2nd. Transl Res. 2011 Apr;157(4):226–235.
  • Zhou YY, Yang D, Zhu WZ et al. Spontaneous activation of beta(2)- but not beta(1)-adrenoceptors expressed in cardiac myocytes from beta(1)beta(2) double knockout mice. Mol Pharmacol. 2000 Nov;58(5):887–894.
  • Tsunematsu T, Okumura S, Mototani Y et al. Coupling of β1-adrenergic receptor to type 5 adenylyl cyclase and its physiological relevance in cardiac myocytes. Biochem Biophys Res Commun. 2015 Mar 13;458(3):531–535.
  • Shin SY, Kim T, Lee HS et al. The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat Commun. 2014 Dec 17;5:5777.
  • Khan M, Mohsin S, Avitabile D et al. β-Adrenergic regulation of cardiac progenitor cell death versus survival and proliferation.Circ Res. 2013 Feb 1;112(3):476–486
  • Morisco C, Zebrowski D, Condorelli G et al. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 2000 May 12;275(19):14466–14475.
  • Summers RJ, McMartin LR, Kompa A, et al. Signalling pathways in cardiac failure. Clin Exp Pharmacol Physiol 1995 Nov;22(11):874–876.
  • Sethi R, Shao Q, Ren B, et al. Changes in  -adrenoceptors in heart failure due to myocardial infarction are attenuated by blockade of renin–angiotensin system. Mol Cell Biochem 2004 Aug;263(1–2):11–20.
  • Díez JSerelaxin: a novel therapy for acute heart failure with a range of hemodynamic and non-hemodynamic actions.Am J Cardiovasc Drugs 2014 Aug;14(4):275–285.
  • Dschietzig T, Teichman S, Unemori E, et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail 2009;15:182–190.
  • Dschietzig T, Richter C, Bartsch C et al. The pregnancy hormone relaxin is a player in human heart failure. Faseb J. 2001. 15:2187–2195
  • Metra M, Ponikowski P, Cotter G, et al.of serelaxin in subgroups of patients with acute heart failure: results from RELAX-AHF. Eur Heart J 2013 Oct;34(40):3128–3136.
  • Morine KJ, Paruchuri V, Qiao X, et al. Biomarkers. Circulating multimarker profile of patients with symptomatic heart failure supports enhanced fibrotic degradation and decreased angiogenesis. Biomarkers. 2015 Dec 15:1–7. [Epub ahead of print].
  • Ueland T, Yndestad A, Oie E et al. Dysregulated osteoprotegerin/rank ligand/rank axis in clinical and experimental heart failure. Circulation. 2005;111:2461–2468.
  • Chicheportiche Y, Bourdon PR, Xu H et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem. 1997 Dec 19;272(51):32401–1.
  • Novoyatleva T, Sajjad A, Engel FB. TWEAK-Fn14 cytokine-receptor axis: a new player of myocardial remodeling and cardiac failure.Front Immunol 2014 Feb 11;5:5.
  • Novoyatleva T, Diehl F, Van Amerongen MJ et al. TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res. 2010 Mar 1;85(4):681–690.
  • Sanz AB, Sanchez-Niño MD, Izquierdo MC, et al.Tweak induces proliferation in renal tubular epithelium: a role in uninephrectomy induced renal hyperplasia. J Cell Mol Med. 2009 Sep;13(9B):3329–3342.
  • Novoyatleva T, Janssen W, Wietelmann A et al. TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy. Cytokine. 2013 Oct;64(1):43–45.
  • Shi J, Jiang B, Qiu Y, et al.PGC1α plays a critical role in TWEAK-induced cardiac dysfunction. PLoS One 2013;8(1):e54054.
  • Mustonen E, Ruskoaho H, Rysä J Thrombospondin-4, tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14: novel extracellular matrix modulating factors in cardiac remodelling. Ann Med. 2012 Dec;44(8):793–804.
  • Ren MY, Sui SJThe role of TWEAK/Fn14 in cardiac remodeling.Mol Biol Rep 2012 Nov;39(11):9971–9977.
  • Jain M, Jakubowski A, Cui L, et al., Burkly LC A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure.Circulation 2009 Apr 21;119(15):2058–2068
  • Chen HN, Wang DJ, Ren MY et al. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-кB pathway. Mol Biol Rep. 2012 Aug;39(8):8231–8241.
  • Chorianopoulos E, Heger T, Lutz M et al. FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol. 2010 Mar;105(2):301–313.
  • Tran NL, McDonough WS, Savitch BA et al. The Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK)-Fibroblast Growth Factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFB pathway activation and BCL-XL/BCL-W expression. J Biol Chem. 2005 Feb 4;280(5):3483–3492.
  • Polek TC, Talpaz M, Darnay BG et al. TWEAK mediates signal transduction and differentiation of RAW264.7 cells in the absence of Fn14/TweakR. Evidence for a second TWEAK receptor. J Biol Chem. 2003 Aug 22;278(34):32317–32323.
  • Matsuda T, Zhai P, Maejima Y et al. Distinct roles of GSK-3alpha and GSK-3beta phosphorylation in the heart under pressure overload. Proc Natl Acad Sci U S A 2008; 105(52): 20900−20905.
  • Tuttolomondo A, Pecoraro R, Pinto AStudies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date.Drug Des Devel Ther 2014 Nov 7;8:2221–2238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.