300
Views
29
CrossRef citations to date
0
Altmetric
Review

The potential of stimulating nitric oxide formation in the treatment of hypertension

, &
Pages 543-556 | Received 28 Sep 2016, Accepted 21 Mar 2017, Published online: 30 Mar 2017

References

  • Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol. 1986 Jun;88(2):411–415.
  • Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21.
  • Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989 Jan;3(1):31–36.
  • Walford G, Loscalzo J. Nitric oxide in vascular biology. J Thromb Haemost. 2003 Oct;1(10):2112–2118.
  • Groves P, Kurz S, Just H, et al. Role of endogenous bradykinin in human coronary vasomotor control. Circulation. 1995 Dec 15;92(12):3424–3430.
  • Joannides R, Haefeli WE, Linder L, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995 Mar 1;91(5):1314–1319.
  • Panza JA, García CE, Kilcoyne CM, et al. Impaired endothelium-dependent vasodilation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation. 1995 Mar 15;91(6):1732–1738.
  • Panza JA, Quyyumi AA, Brush JE Jr., et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990 Jul 5;323(1):22–27.
  • Taddei S, Virdis A, Ghiadoni L, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001 Aug;38(2):274–279.
  • Ribeiro MO, Antunes E, de Nucci G, et al. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension. 1992 Sep;20(3):298–303.
  • Taddei S, Virdis A, Ghiadoni L, et al. Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol. 2001 Nov;38(Suppl 2):S11–S14.
  • Kumar KV, Das UN. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic Res Commun. 1993;19(1):59–66.
  • Kumar CA, Das UN. Lipid peroxides, anti-oxidants and nitric oxide in patients with pre-eclampsia and essential hypertension. Med Sci Monit. 2000 Sep-Oct;6(5):901–907.
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007 Jan;87(1):315–424.
  • Radi R, Beckman JS, Bush KM, et al. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487.
  • Schulz E, Jansen T, Wenzel P, et al. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal. 2008 Jun;10(6):1115–1126.
  • Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003 Apr;111(8):1201–1209.
  • Baylis C, Harvey J, Engels K. Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of angiotensin II. J Am Soc Nephrol. 1994 Aug;5(2):211–214.
  • Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol. 2005 Oct;289(4):R913–R935.
  • Cheng W-H, Ho W-Y, Chang C-F, et al. Simvastatin induces a central hypotensive effect via Ras-mediated signalling to cause eNOS up-regulation. Br J Pharmacol. 2013 Oct;170(4):847–858.
  • Cheng W-H, Lu P-J, Ho W-Y, et al. Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ Res. 2010 Mar 05;106(4):788–795.
  • Abu-Soud HM, Presta A, Mayer B, et al. Analysis of neuronal NO synthase under single-turnover conditions: conversion of Nomega-hydroxyarginine to nitric oxide and citrulline. Biochemistry. 1997 Sep 9;36(36):10811–10816.
  • Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001 Aug 1;357(Pt 3):593–615.
  • Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999 Aug 15;43(3):521–531.
  • Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736.
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258.
  • Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci. 1997 Dec;22(12):477–481.
  • Lopez-Jaramillo P, Gonzalez MC, Palmer RM, et al. The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br J Pharmacol. 1990 Oct;101(2):489–493.
  • Schini VB, Vanhoutte PM. Inhibitors of calmodulin impair the constitutive but not the inducible nitric oxide synthase activity in the rat aorta. J Pharmacol Exp Ther. 1992 May;261(2):553–559.
  • Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503–3513.
  • Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999 Jun 10;399(6736):601–605.
  • Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol. 2007 Feb;42(2):271–279.
  • Tain Y-L, Hsu C-N. Targeting on asymmetric dimethylarginine-related nitric oxide-reactive oxygen species imbalance to reprogram the development of hypertension. Int J Mol Sci. 2016 Dec 02;17(12):2020.
  • Shiva S, Wang X, Ringwood LA, et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol. 2006 Sep;2(9):486–493.
  • Phizackerley PJ, Al-Dabbagh SA. The estimation of nitrate and nitrite in saliva and urine. Anal Biochem. 1983 May;131(1):242–245.
  • Spiegelhalder B, Eisenbrand G, Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol. 1976 Dec;14(6):545–548.
  • Wagner DA, Schultz DS, Deen WM, et al. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983 Apr;43(4):1921–1925.
  • Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999 May 5;1411(2–3):273–289.
  • Hendgen-Cotta UB, Merx MW, Shiva S, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10256–10261.
  • Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008 Feb;7(2):156–167.
  • Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med. 2011 Jul 1;51(1):17–29.
  • Koesling D, Russwurm M, Mergia E, et al. Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int. 2004 Nov;45(6):813–819.
  • Han J, Kim N, Kim E, et al. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem. 2001 Jun 22;276(25):22140–22147.
  • Wooldridge AA, MacDonald JA, Erdodi F, et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem. 2004 Aug 13;279(33):34496–34504.
  • Yang L, Liu G, Zakharov SI, et al. Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res. 2007 Aug 31;101(5):465–474.
  • Bolotina VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853.
  • Kokkola T, Savinainen JR, Mönkkönen KS, et al. S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biol. 2005;6(1):21.
  • Maron BA, Tang S-S, Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal. 2013 Jan 20;18(3):270–287.
  • Zhou A, Carrell RW, Murphy MP, et al. A redox switch in angiotensinogen modulates angiotensin release. Nature. 2010 Nov 4;468(7320):108–111.
  • Leclerc PC, Lanctot PM, Auger-Messier M, et al. S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol. 2006 Jun;148(3):306–313.
  • Selemidis S, Dusting GJ, Peshavariya H, et al. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res. 2007 Jul 15;75(2):349–358.
  • Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001 Mar 1;1504(1):46–57.
  • Clementi E, Brown GC, Feelisch M, et al. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7631–7636.
  • Erusalimsky JD, Moncada S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2524–2531.
  • Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010 May;459(6):923–939.
  • Rodrigues GJ, Lunardi CN, Lima RG, et al. Vitamin C improves the effect of a new nitric oxide donor on the vascular smooth muscle from renal hypertensive rats. Nitric Oxide. 2008 May;18(3):176–183.
  • Taddei S, Virdis A, Ghiadoni L, et al. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998 Jun 9;97(22):2222–2229.
  • Juraschek SP, Guallar E, Appel LJ, et al. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012 May;95(5):1079–1088.
  • Simonsen U, Christensen FH, Buus NH. The effect of tempol on endothelium-dependent vasodilatation and blood pressure. Pharmacol Ther. 2009 May;122(2):109–124.
  • Wang D, Luo Z, Wang X, et al. Impaired endothelial function and microvascular asymmetrical dimethylarginine in angiotensin II-infused rats: effects of tempol. Hypertension. 2010 Nov;56(5):950–955.
  • Costa CA, Amaral TA, Carvalho LC, et al. Antioxidant treatment with tempol and apocynin prevents endothelial dysfunction and development of renovascular hypertension. Am J Hypertens. 2009 Dec;22(12):1242–1249.
  • Pechánová O, Zicha J, Kojsová S, et al. Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension. Clin Sci (Lond). 2006 Feb;110(2):235–242.
  • Rauchová H, Pechánová O, Kunes J, et al. Chronic N-acetylcysteine administration prevents development of hypertension in N(omega)-nitro-L-arginine methyl ester-treated rats: the role of reactive oxygen species. Hypertens Res. 2005 May;28(5):475–482.
  • Fan NC, Tsai CM, Hsu CN, et al. N-acetylcysteine prevents hypertension via regulation of the ADMA-DDAH pathway in young spontaneously hypertensive rats. Biomed Res Int. 2013;2013:696317.
  • Qiao Y-F, Guo W-J, Li L, et al. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats. Mol Med Rep. 2016 Jan;13(1):21–26.
  • Mladenka P, Zatloukalová L, Filipský T, et al. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic Biol Med. 2010 Sep 15;49(6):963–975.
  • Montenegro MF, Neto-Neves EM, Dias-Junior CA, et al. Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2010 Oct;382(4):293–301.
  • Sanchez M, Galisteo M, Vera R, et al. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens. 2006 Jan;24(1):75–84.
  • Li H, Förstermann U. Resveratrol: a multifunctional compound improving endothelial function. Editorial to: “Resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats” by S. Soylemez et al. Cardiovasc Drugs Ther. 2009 Dec;23(6):425–429.
  • Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002 Sep 24;106(13):1652–1658.
  • Wallerath T, Li H, Gödtel-Ambrust U, et al. A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide. 2005 Mar;12(2):97–104.
  • Spanier G, Xu H, Xia N, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol. 2009 Oct;60(Suppl 4):111–116.
  • Navarro JA, de Gouveia LA, Rocha-Penha L, et al. Reduced levels of potential circulating biomarkers of cardiovascular diseases in apparently healthy vegetarian men. Clin Chim Acta. 2016 Aug;2(461):110–113.
  • Katusic ZS, d’Uscio LV, Nath KA. Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol Sci. 2009 Jan;30(1):48–54.
  • Li H, Witte K, August M, et al. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol. 2006 Jun 20;47(12):2536–2544.
  • Gu Y, Tang X, Xie L, et al. Aliskiren improves endothelium-dependent relaxation of thoracic aorta by activating PI3K/Akt/eNOS signal pathway in SHR. Clin Exp Pharmacol Physiol. 2016 Apr;43(4):450–458.
  • Pechanova O, Matuskova J, Capikova D, et al. Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int. 2006 Jul;70(1):170–176.
  • Miguel-Carrasco JL, Monserrat MT, Mate A, et al. Comparative effects of captopril and l-carnitine on blood pressure and antioxidant enzyme gene expression in the heart of spontaneously hypertensive rats. Eur J Pharmacol. 2010 Apr 25;632(1–3):65–72.
  • Zhao Y, Flavahan S, Leung SW, et al. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling. Am J Physiol Heart Circ Physiol. 2015 Feb 15;308(4):H358–H363.
  • Chopra M, Beswick H, Clapperton M, et al. Antioxidant effects of angiotensin-converting enzyme (ACE) inhibitors: free radical and oxidant scavenging are sulfhydryl dependent, but lipid peroxidation is inhibited by both sulfhydryl- and nonsulfhydryl-containing ACE inhibitors. J Cardiovasc Pharmacol. 1992 Mar;19(3):330–340.
  • Liu Y-H, You Y, Song T, et al. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril. J Cardiovasc Pharmacol. 2007 Aug;50(2):155–161.
  • Marcal DM, Rizzi E, Martins-Oliveira A, et al. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2011 Jan;383(1):35–44.
  • Martinez ML, Castro MM, Rizzi E, et al. Lercanidipine reduces matrix metalloproteinase-2 activity and reverses vascular dysfunction in renovascular hypertensive rats. Eur J Pharmacol. 2008 Sep 4;591(1–3):224–230.
  • Lob H, Rosenkranz AC, Breitenbach T, et al. Antioxidant and nitric oxide-sparing actions of dihydropyridines and ACE inhibitors differ in human endothelial cells. Pharmacology. 2006;76(1):8–18.
  • Berkels R, Taubert D, Bartels H, et al. Amlodipine increases endothelial nitric oxide by dual mechanisms. Pharmacology. 2004 Jan;70(1):39–45.
  • Berkels R, Egink G, Marsen TA, et al. Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms. Hypertension. 2001 Feb;37(2):240–245.
  • Günther J, Dhein S, Rösen R, et al. Nitric oxide (EDRF) enhances the vasorelaxing effect of nitrendipine in various isolated arteries. Basic Res Cardiol. 1992 Sep-Oct;87(5):452–460.
  • Mason RP, Kubant R, Jacob RF, et al. Effect of nebivolol on endothelial nitric oxide and peroxynitrite release in hypertensive animals: role of antioxidant activity. J Cardiovasc Pharmacol. 2006 Jul;48(1):862–869.
  • Wagner AH, Köhler T, Rückschloss U, et al. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000 Jan;20(1):61–69.
  • Guimarães DA, Rizzi E, Ceron CS, et al. Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension. Redox Biol. 2013;1:578–585.
  • Mergia E, Stegbauer J. Role of phosphodiesterase 5 and cyclic GMP in hypertension. Curr Hypertens Rep. 2016 Apr;18(5):39.
  • Pullamsetti SS, Savai R, Schaefer MB, et al. cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases. Circulation. 2011 Mar 22;123(11):1194–1204.
  • Dumont Y, D’Amours M, Lebel M, et al. Supplementation with a low dose of L-arginine reduces blood pressure and endothelin-1 production in hypertensive uraemic rats. Nephrol Dial Transplant. 2001 Apr;16(4):746–754.
  • Chen PY, Sanders PW. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991 Nov;88(5):1559–1567.
  • Gouvêa SA, Moysés MR, Bissoli NS, et al. Oral administration of L-arginine decreases blood pressure and increases renal excretion of sodium and water in renovascular hypertensive rats. Braz J Med Biol Res. 2003 Jul;36(7):943–949.
  • Matsuoka H, Nakata M, Kohno K, et al. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. Hypertension. 1996 Jan;27(1):14–18.
  • Ast J, Jablecka A, Bogdanski P, et al. Evaluation of the antihypertensive effect of L-arginine supplementation in patients with mild hypertension assessed with ambulatory blood pressure monitoring. Med Sci Monit. 2010 May;16(5):CR266–CR271.
  • Chien S-J, Lin K-M, Kuo H-C, et al. Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats: l-citrulline and nitrate. Transl Res. 2014 Jan;163(1):43–52.
  • Ota H, Eto M, Kano MR, et al. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol. 2010 Nov;30(11):2205–2211.
  • Rossoni LV, Wareing M, Wenceslau CF, et al. Acute simvastatin increases endothelial nitric oxide synthase phosphorylation via AMP-activated protein kinase and reduces contractility of isolated rat mesenteric resistance arteries. Clin Sci (Lond). 2011 Nov;121(10):449–458.
  • Pérez-Guerrero C, Alvarez de Sotomayor M, Jimenez L, et al. Effects of simvastatin on endothelial function after chronic inhibition of nitric oxide synthase by L-NAME. J Cardiovasc Pharmacol. 2003 Aug;42(2):204–210.
  • Jones SP, Gibson MF, Rimmer DM 3rd, et al. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J Am Coll Cardiol. 2002 Sep 18;40(6):1172–1178.
  • Guimarães DA, Rizzi E, Ceron CS, et al. Atorvastatin and sildenafil decrease vascular TGF-beta levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension. Redox Biol. 2015;6:386–395.
  • Meschiari CA, Pinheiro LC, Guimaraes DA, et al. Sodium nitrite attenuates MMP-9 production by endothelial cells and may explain similar effects of atorvastatin. Naunyn Schmiedebergs Arch Pharmacol. 2016 Feb;389(2):223–231.
  • Dessy C, Saliez J, Ghisdal P, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation. 2005 Aug 23;112(8):1198–1205.
  • Maffei A, Di Pardo A, Carangi R, et al. Nebivolol induces nitric oxide release in the heart through inducible nitric oxide synthase activation. Hypertension. 2007 Oct;50(4):652–656.
  • Jiang H, Polhemus DJ, Islam KN, et al. Nebivolol acts as a S-nitrosoglutathione reductase inhibitor: a new mechanism of action. J Cardiovasc Pharmacol Ther. 2016 Sep;21(5):478–485.
  • Lenasi H, Kohlstedt K, Fichtlscherer B, et al. Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser1177 and Thr495. Cardiovasc Res. 2003 Oct 1;59(4):844–853.
  • Lewis SJ, Hashmi-Hill MP, Owen JR, et al. ACE inhibition restores the vasodilator potency of the endothelium-derived relaxing factor, L-S-nitrosocysteine, in conscious spontaneously hypertensive rats. Vascul Pharmacol. 2006 Jun;44(6):491–507.
  • Nikolaidis LA, Doverspike A, Huerbin R, et al. Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism. Circulation. 2002 Jun 11;105(23):2785–2790.
  • Kumar KV, Das UN. Effect of cis-unsaturated fatty acids, prostaglandins, and free radicals on angiotensin-converting enzyme activity in vitro. Proc Soc Exp Biol Med. 1997 Apr;214(4):374–379.
  • Ackermann A, Fernández-Alfonso MS, Sánchez de Rojas R, et al. Modulation of angiotensin-converting enzyme by nitric oxide. Br J Pharmacol. 1998 May;124(2):291–298.
  • Cosentino F, Savoia C, De Paolis P, et al. Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens. 2005 Apr;18(4 Pt 1):493–499.
  • Klingbeil AU, John S, Schneider MP, et al. Effect of AT1 receptor blockade on endothelial function in essential hypertension. Am J Hypertens. 2003 Feb;16(2):123–128.
  • Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, et al. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 2015 Aug;9(4):217–237.
  • Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 1998 Jan;31(1 Pt 2):356–361.
  • Napoli C, Ignarro LJ. Nitric oxide-releasing drugs. Annu Rev Pharmacol Toxicol. 2003;43:97–123.
  • Breschi MC, Calderone V, Digiacomo M, et al. NO-sartans: a new class of pharmacodynamic hybrids as cardiovascular drugs. J Med Chem. 2004 Nov 04;47(23):5597–5600.
  • Tsuchiya K, Kanematsu Y, Yoshizumi M, et al. Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2163–H2170.
  • Classen HG, Stein-Hammer C, Thöni H. Hypothesis: the effect of oral nitrite on blood pressure in the spontaneously hypertensive rat. Does dietary nitrate mitigate hypertension after conversion to nitrite? J Am Coll Nutr. 1990 Oct;9(5):500–502.
  • Beier S, Classen HG, Loeffler K, et al. Antihypertensive effect of oral nitrite uptake in the spontaneously hypertensive rat. Arzneimittelforschung. 1995 Mar;45(3):258–261.
  • Haas M, Classen HG, Thöni H, et al. Persistent antihypertensive effect of oral nitrite supplied up to one year via the drinking water in spontaneously hypertensive rats. Arzneimittelforschung. 1999 Apr;49(4):318–323.
  • Montenegro MF, Pinheiro LC, Amaral JH, et al. Antihypertensive and antioxidant effects of a single daily dose of sodium nitrite in a model of renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2012 May;385(5):509–517.
  • Montenegro MF, Amaral JH, Pinheiro LC, et al. Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Radic Biol Med. 2011 Jul 1;51(1):144–152.
  • Amaral JH, Ferreira GC, Pinheiro LC, et al. Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension. Redox Biol. 2015 Aug;5:340–346.
  • Oliveira-Paula GH, Pinheiro LC, Guimaraes DA, et al. Tempol improves xanthine oxidoreductase-mediated vascular responses to nitrite in experimental renovascular hypertension. Redox Biol. 2016;8:398–406.
  • Gao X, Yang T, Liu M, et al. NADPH oxidase in the renal microvasculature is a primary target for blood pressure-lowering effects by inorganic nitrate and nitrite. Hypertension. 2015 Jan;65(1):161–170.
  • Pinheiro LC, Amaral JH, Ferreira GC, et al. The antihypertensive effects of sodium nitrite are not associated with circulating angiotensin converting enzyme inhibition. Nitric Oxide. 2014 Aug;31(40):52–59.
  • Erdös EG, Skidgel RA. The angiotensin I-converting enzyme. Lab Invest. 1987 Apr;56(4):345–348.
  • Pinheiro LC, Amaral JH, Ferreira GC, et al. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension. Free Radic Biol Med. 2015 Oct;87:252–262.
  • Govoni M, Jansson EA, Weitzberg E, et al. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008 Dec;19(4):333–337.
  • Xu J, Xu X, Verstraete W. Quantitative measurement of the nitrate reductase activity in the human oral cavity. Food Chem Toxicol. 2001 Apr;39(4):393–400.
  • Doel JJ, Benjamin N, Hector MP, et al. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci. 2005 Feb;113(1):14–19.
  • Petersson J, Carlström M, Schreiber O, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009 Apr 15;46(8):1068–1075.
  • Pinheiro LC, Montenegro MF, Amaral JH, et al. Increase in gastric pH reduces hypotensive effect of oral sodium nitrite in rats. Free Radic Biol Med. 2012 Aug 15;53(4):701–709.
  • Amaral JH, Montenegro MF, Pinheiro LC, et al. TEMPOL enhances the antihypertensive effects of sodium nitrite by mechanisms facilitating nitrite-derived gastric nitric oxide formation. Free Radic Biol Med. 2013;65:446–455.
  • van Faassen EE, Bahrami S, Feelisch M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009 Sep;29(5):683–741.
  • Gladwin MT, Kim-Shapiro DB. The functional nitrite reductase activity of the heme-globins. Blood. 2008 Oct 1;112(7):2636–2647.
  • Shiva S, Huang Z, Grubina R, et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res. 2007;100(5):654–661.
  • Rassaf T, Flögel U, Drexhage C, et al. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100(12):1749–1754.
  • Li H, Samouilov A, Liu X, et al. Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem. 2004 Apr 23;279(17):16939–16946.
  • Li H, Cui H, Kundu TK, et al. Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem. 2008 Jun 27;283(26):17855–17863.
  • Gautier C, van Faassen E, Mikula I, et al. Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun. 2006 Mar 17;341(3):816–821.
  • Kozlov AV, Staniek K, Nohl H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 1999 Jul 2;454(1–2):127–130.
  • Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta. 2014 Sep;1842(9):1502–1517.
  • Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol. 2013;1:353–358.
  • Suzuki H, DeLano FA, Parks DA, et al. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4754–4759.
  • Zhang Z, Naughton DP, Blake DR, et al. Human xanthine oxidase converts nitrite ions into nitric oxide (NO). Biochem Soc Trans. 1997 Aug;25(3):524S.
  • Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide. 2013 Nov;1(34):19–26.
  • Montenegro MF, Pinheiro LC, Amaral JH, et al. Vascular xanthine oxidoreductase contributes to the antihypertensive effects of sodium nitrite in L-NAME hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2014 Jun;387(6):591–598.
  • Ghosh SM, Kapil V, Fuentes-Calvo I, et al. Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential. Hypertension. 2013 May;61(5):1091–1102.
  • Ling WC, Murugan DD, Lau YS, et al. Sodium nitrite exerts an antihypertensive effect and improves endothelial function through activation of eNOS in the SHR. Sci Rep. 2016;6:33048.
  • Sonoda K, Ohtake K, Kubo Y, et al. Aldehyde dehydrogenase 2 partly mediates hypotensive effect of nitrite on L-NAME-induced hypertension in normoxic rat. Clin Exp Hypertens. 2014;36(6):410–418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.