813
Views
44
CrossRef citations to date
0
Altmetric
Review

GRK2 as a therapeutic target for heart failure

, , ORCID Icon, , , , & show all
Pages 75-83 | Received 27 Sep 2017, Accepted 15 Nov 2017, Published online: 23 Nov 2017

References

  • Ponikowski P, Anker SD, AlHabib KF, et al. Heart failure: preventing disease and death worldwide. ESC Heart Failure. 2014;1:4–25.
  • Roger VL. Epidemiology of heart failure. Circ Res. 2013;113:646–659.
  • Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215.
  • Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2009;119:e391–e479.
  • Rengo G, Pagano G, Paolillo S, et al. Impact of diabetes mellitus on lymphocyte GRK2 protein levels in patients with heart failure. Eur J Clin Invest. 2015;45(2):187–195.
  • Cannavo A, Liccardo D, Lymperopoulos A, et al. GRK2 Regulates α2-Adrenergic receptor-dependent catecholamine release in human adrenal chromaffin cells. J Am Coll Cardiol. 2017;69(11):1515–1517.
  • Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ Res. 2016;118(8):1244–1253.
  • Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114:1815–1826.
  • Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol. 2013;4:264.
  • Huang S, Patterson E, Yu X, et al. Proteasome inhibition 1 h following ischemia protects GRK2 and prevents malignant ventricular tachyarrhythmias and SCD in a model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2008;294(3):H1298–303.
  • Cannavo A, Liccardo D, Eguchi A, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877.
  • Sato PY, Chuprun JK, Ibetti J, et al. GRK2 compromises cardiomyocyte mitochondrial function by diminishing fatty acid-mediated oxygen consumption and increasing superoxide levels. J Mol Cell Cardiol. 2015;89(Pt B):360–364.
  • Chen M, Sato PY, Chuprun JK, et al. Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting. Circ Res. 2013;112(8):1121–1134.
  • Fan Q, Chen M, Zuo L, et al. Myocardial ablation of G protein-coupled receptor kinase 2 (GRK2) decreases ischemia/reperfusion injury through an anti-intrinsic apoptotic pathway. PLoS One. 2013;8(6):e66234.
  • Ciccarelli M, Chuprun JK, Rengo G, et al. G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation. 2011;123(18):1953–1962.
  • Rengo G, Pagano G, Filardi PP, et al. Prognostic value of lymphocyte G protein-coupled receptor kinase-2 protein levels in patients with heart failure. Circ Res. 2016;118(7):1116–1124.
  • Rengo G, Galasso G, Femminella GD, et al. Reduction of lymphocyte G protein-coupled receptor kinase-2 (GRK2) after exercise training predicts survival in patients with heart failure. Eur J Prev Cardiol. 2014;21(1):4–11.
  • Waldschmidt HV, Homan KT, Cato MC, et al. Structure-Based design of highly selective and potent G protein-coupled receptor kinase 2 inhibitors based on paroxetine. J Med Chem. 2017 Apr 13;60(7):3052–3069.
  • Cannavo A, Koch WJ. GRK2 as negative modulator of NO bioavailability: implications for cardiovascular disease. Cell Signal. 2017. pii: S0898-6568(17)30014-1. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28077324
  • Waldschmidt HV, Homan KT, Cruz-Rodríguez O, et al. Structure-based design, synthesis, and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. J Med Chem. 2016;59(8):3793–3807.
  • Salazar NC, Vallejos X, Siryk A, et al. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal. 2013;11:64.
  • Benovic JL, Stone WC, Huebner K, et al. cDNA cloning and chromosomal localization of the human beta-adrenergic receptor kinase. FEBS Lett. 1991;283(1):122–126.
  • Arriza JL, Dawson TM, Simerly RB, et al. The G-protein-coupled receptor kinases beta ARK1 and beta ARK2 are widely distributed at synapses in rat brain. J Neurosci. 1992;12(10):4045–4055.
  • Koch WJ, Inglese J, Stone WC, et al. The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem. 1993;268(11):8256–8260.
  • Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995;268(5215):1350–1353.
  • Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal. 2014;9(1):1.
  • Penela P, Barradas M, Alvarez-Dolado M, et al. Effect of hypothyroidism on G protein-coupled receptor kinase 2 expression levels in rat liver, lung, and heart. Endocrinology. 2001;142(3):987–991.
  • Erdtmann-Vourliotis M, Mayer P, Ammon S, et al. Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain. Brain Res Mol Brain Res. 2001;95(1–2):129–137.
  • Pitcher JA, Freedman NJ. Lefkowitz RJ G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692.
  • Lodowski DT, Pitcher JA, Capel WD, et al. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science. 2003;300(5623):1256–1262.
  • Pao CS, Barker BL, Benovic JL. Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry. 2009;48(30):7325–7333.
  • Ribas C, Penela P, Murga C, et al. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta. 2007;1768:913–922.
  • Sterne-Marr R, Leahey PA, Bresee JE, et al. GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Biochemistry. 2009;48(20):4285–4293.
  • Homan KT, Tesmer JJ. Structural insights into G protein-coupled receptor kinase function. Curr Opin Cell Biol. 2014;27:25–31.
  • Noble B, Kallal LA, Pausch MH, et al. Development of a yeast bioassay to characterize G protein-coupled receptor kinases. Identification of an NH -terminal region essential for receptor phosphorylation. J Biol Chem. 2003;278:47466–47476.
  • Boguth CA, Singh P, Huang CC, et al. Molecular basis for activation of G protein-coupled receptor kinases. Embo J. 2010;29:3249–3259.
  • Beautrait A, Michalski KR, Lopez TS, et al. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. J Biol Chem. 2014;289(36):25262–25275.
  • Lohse MJ, Andexinger S, Pitcher J, et al. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem. 1992;267(12):8558–8564.
  • Krasel C, Dammeier S, Winstel R, et al. Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J Biol Chem. 2001;276(3):1911–1915.
  • Sterne-Marr R, Leahey PA, Bresee JE, et al. GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Biochemistry. 2009;48:4285–4293.
  • Tesmer VM, Kawano T, Shankaranarayanan A, et al. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science. 2005;310:1686–1690.
  • Jaber M, Koch WJ, Rockman H, et al. Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A. 1996;93(23):12974–12979.
  • Rockman HA, Chien KR, Choi DJ, et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A. 1998;95(12):7000–7005.
  • Raake PW, Vinge LE, Gao E, et al. G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res. 2008;103(4):413–422.
  • Schlegel P, Reinkober J, Meinhardt E, et al. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PLoS One. 2017;12(7):e0182110.
  • Hullmann JE, Grisanti LA, Makarewich CA, et al. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ Res. 2014;115(12):976–985.
  • Colak D, Alaiya AA, Kaya N, et al. Integrated left ventricular global transcriptome and proteome profiling in human end-stage dilated cardiomyopathy. PLoS One. 2016;11(10):e0162669.
  • Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res. 2009;82(2):193–200.
  • Cannavo A, Rengo G, Liccardo D, et al. β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation. 2013;128(15):1612–1622.
  • Izzo R, Cipolletta E, Ciccarelli M, et al. Enhanced GRK2 expression and desensitization of betaAR vasodilatation in hypertensive patients. Clin Transl Sci. 2008;1(3):215–220.
  • Lymperopoulos A, Rengo G, Funakoshi H, et al. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med. 2007;13(3):315–323.
  • Lymperopoulos A, Rengo G, Zincarelli C, et al. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther. 2008;16(2):302–307.
  • Eckhart AD, Ozaki T, Tevaearai H, et al. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol. 2002;61(4):749–758.
  • Liu S, Premont RT, Kontos CD, et al. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med. 2005;11(9):952–958.
  • Cannavo A, Liccardo D, Lymperopoulos A, et al. β adrenergic receptor kinase c-terminal peptide gene-therapy improves β2-adrenergic receptor-dependent neoangiogenesis after hindlimb ischemia. J Pharmacol Exp Ther. 2016;356(2):503–513.
  • Woodall MC, Woodall BP, Gao E, et al. Cardiac Fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ Res. 2016;119(10):1116–1127.
  • Travers JG, Kamal FA, Valiente-Alandi I, et al. Pharmacological and activated fibroblast targeting of Gβγ-GRK2 after myocardial ischemia attenuates heart failure progression. J Am Coll Cardiol. 2017;70(8):958–971.
  • Mayor F Jr, Cruces-Sande M, Arcones AC, et al. G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cell Signal. 2017. pii: S0898-6568(17)30102-X. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28389415
  • Lucas E, Vila-Bedmar R, Arcones AC, et al. Obesity-induced cardiac lipid accumulation in adult mice is modulated by G protein-coupled receptor kinase 2 levels. Cardiovasc Diabetol. 2016;15(1):155.
  • Vila-Bedmar R, Cruces-Sande M, Lucas E, et al. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal. 2015;8(386):ra73.
  • Briet M, Schiffrin EL. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6:261–273.
  • Marney AM, Brown NJ. Aldosterone and end organ damage. Clin Sci (Lond). 2007;113:267–278.
  • He BJ, Joiner ML, Singh MV, et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med. 2011;17:1610–1618.
  • Bathgate-Siryk A, Dabul S, Pandya K, et al. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension. 2014;63(2):404–412.
  • Schade D, Kotthaus J. Clement B Modulating the NO generating system from a medicinal chemistry perspective: current trends and therapeutic options in cardiovascular disease. Pharmacol Ther. 2010;126:279–300.
  • Bonetti PO, Lerman LO. Lerman A Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–175.
  • Huang ZM, Gao E, Fonseca FV, et al. Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal. 2013;6(299):ra95.
  • Rengo G, Cannavo A, Liccardo D, et al. Vascular endothelial growth factor blockade prevents the beneficial effects of β-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure. Circ Heart Fail. 2013;6(6):1259–1267.
  • Zhang Z, Ding L, Jin Z, et al. Nebivolol protects against myocardial infarction injury via stimulation of beta 3-adrenergic receptors and nitric oxide signaling. PLoS One. 2014;9:e98179.
  • Guccione M, Ettari R, Taliani S, et al. G-protein-coupled receptor kinase 2 (GRK2) inhibitors: current trends and future perspectives. J Med Chem. 2016;59(20):9277–9294.
  • Homan KT, Tesmer JJ. Molecular basis for small molecule inhibition of G protein-coupled receptor kinases. ACS Chem Biol. 2015;10(1):246–256.
  • Benovic JL, Stone WC, Caron MG, et al. Inhibition of the beta-adrenergic receptor kinase by polyanions. J Biol Chem. 1989;264(12):6707–6710.
  • Benovic JL, Onorato J, Lohse MJ, et al. Synthetic peptides of the hamster beta 2-adrenoceptor as substrates and inhibitors of the beta-adrenoceptor kinase. Br J Clin Pharmacol. 1990;30(Suppl 1):3S–12S.
  • Palczewski K, Kahn N, Hargrave PA. Nucleoside inhibitors of rhodopsin kinase. Biochemistry. 1990;29(26):6276–6282.
  • Winstel R, Ihlenfeldt HG, Jung G, et al. Peptide inhibitors of G protein-coupled receptor kinases. Biochem Pharmacol. 2005;70(7):1001–1008.
  • Setyawan J, Koide K, Diller TC, et al. Inhibition of protein kinases by balanol: specificity within the serine/threonine protein kinase subfamily. Mol Pharmacol. 1999;56(2):370–376.
  • Tesmer JJ, Tesmer VM, Lodowski DT, et al. Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol. J Med Chem. 2010;53(4):1867–1870.
  • Ikeda S, Keneko M, Fujiwara S, Inventors; Takeda Pharmaceutical Company Ltd., Ikeda S, Keneko M, and Fujiwara S, assignees. Cardiotonic agent comprising GRK inhibitor. World patent WO2007034846. 2007 March 29
  • Thal DM, Homan KT, Chen J, et al. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol. 2012;7(11):1830–1839.
  • Schumacher SM, Gao E, Zhu W, et al. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci Transl Med. 2015;7(277):277ra31.
  • Mayer G, Wulffen B, Huber C, et al. An RNA molecule that specifically inhibits G-protein-coupled receptor kinase 2 in vitro. Rna. 2008;14(3):524–534.
  • Doronin S, Lin F, Wang HY, et al. The full-length, cytoplasmic C-terminus of the beta 2-adrenergic receptor expressed in E. coli acts as a substrate for phosphorylation by protein kinase A, insulin receptor tyrosine kinase, GRK2, but not protein kinase C and suppresses desensitization when expressed in vivo. Protein Expr Purif. 2000;20(3):451–461.
  • Abd Alla J, Graemer M, Fu X, et al. Inhibition of G-protein-coupled receptor kinase 2 prevents the dysfunctional cardiac substrate metabolism in fatty acid synthase transgenic mice. J Biol Chem. 2016;291(6):2583–2600.
  • Rengo G, Lymperopoulos A, Zincarelli C, et al. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation. 2009;119(1):89–98.
  • Raake PW, Schlegel P, Ksienzyk J, et al. AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J. 2013;34(19):1437–1447.
  • Casey LM, Pistner AR, Belmonte SL, et al. Small molecule disruption of G beta gamma signaling inhibits the progression of heart failure. Circ Res. 2010;107(4):532–539.
  • Bernardo BC, Blaxall BC. From bench to bedside: new approaches to therapeutic discovery for heart failure. Heart Lung Circ. 2016;25(5):425–434.
  • Williams ML, Hata JA, Schroder J, et al. Targeted beta-adrenergic receptor kinase (betaARK1) inhibition by gene transfer in failing human hearts. Circulation. 2004;109(13):1590–1593. Epub 2004 Mar 29
  • Rengo G, Lymperopoulos A, Koch WJ. Future g protein-coupled receptor targets for treatment of heart failure. Curr Treat Options Cardiovasc Med. 2009;11(4):328–338.
  • Iaccarino G, Tomhave ED, Lefkowitz RJ, et al. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation. 1998;98(17):1783–1789.
  • Reinkober J, Tscheschner H, Pleger ST, et al. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther. 2012;19(6):686–693.
  • Cannavo A, Koch WJ. Targeting β3-adrenergic receptors in the heart: selective agonism and β-blockade. J Cardiovasc Pharmacol. 2017;69(2):71–78.
  • Nogués L, Palacios-García J, Reglero C, et al. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin Cancer Biol. 2017. pii: S1044-579X(17)30109-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28473253
  • Nogués L, Reglero C, Rivas V, et al. G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol Pharmacol. 2017;91(3):220–228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.