562
Views
24
CrossRef citations to date
0
Altmetric
Review

Calpain-2 as a therapeutic target for acute neuronal injury

, &
Pages 19-29 | Received 20 Jun 2017, Accepted 22 Nov 2017, Published online: 28 Nov 2017

References

  • Guroff G. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem. 1964;239(1):149–155.
  • Murachi T, Tanaka K, Hatanaka M, et al. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul. 1981;19:407–424.
  • Lynch G, Baudry M. The biochemistry of memory- A new and specific hypothesis. Science. 1984;224(4653):1057–1063.
  • Baudry M, Chou MM, Bi X. Targeting calpain in synaptic plasticity. Expert Opin Ther Targets. 2013;17(5):579–592.
  • Zhu G, Liu Y, Wang Y, et al. Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci. 2015;35(2):621–633.
  • Nixon RA, Saito KI, Grynspan F, et al. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann N Y Acad Sci. 1994 Dec;15(747):77–91. PubMed PMID: 7847693.
  • Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol. 2000;81(5):323–339.
  • Goll DE, Thompson VF, Li H, et al. The calpain system. Physiol Rev. 2003;83(3):731–801.
  • Camins A, Verdaguer E, Folch J, et al. Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev. 2006;12(2):135–148.
  • Bevers MB, Neumar RW. Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab. 2008;28(4):655–673.
  • Vosler P, Brennan C, Chen J. Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol. 2008;38(1):78–100.
  • Baudry M, Bi X. Calpain-1 and calpain-2: the Yin and Yang of synaptic plasticity and Neurodegeneration. Trends Neurosci. 2016 Feb 10. PubMed PMID: 26874794.
  • Liu J, Liu MC, Wang KK. Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal. 2008;1(14):re1. PubMed PMID: 18398107.
  • Sorimachi H, Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res. 2012;96(1):11–22.
  • Macqueen DJ, Wilcox AH. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biol. 2014;4(4):130219.
  • Huang Y, Wang KK. The calpain family and human diseases. Trends Mol Med. 2001;7(8):355–362.
  • Beckmann JS, Bushby KM. Advances in the molecular genetics of the limb-girdle type of autosomal recessive progressive muscular dystrophy. Curr Opin Neurol. 1996;9(5):389.
  • Gallardo E, De Luna N, Diaz-Manera J, et al. Comparison of dysferlin expression in human skeletal muscle with that in monocytes for the diagnosis of dysferlin myopathy. PloS One. 2011;6(12):e29061.
  • Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov. 2016.
  • Harris F, Biswas S, Singh J, et al. Calpains and their multiple roles in diabetes mellitus. Ann N Y Acad Sci. 2006;1084(1):452–480.
  • Litosh VA, Rochman M, Rymer JK, et al. Calpain-14 and its association with eosinophilic esophagitis. J Allergy Clin Immunol. 2017;139(6):1762–1771.
  • Mahajan VB, Skeie JM, Bassuk AG, et al. Calpain-5 mutations cause autoimmune uveitis, retinal neovascularization, and photoreceptor degeneration. PLoS Genetics. 2012;8(10):e1003001.
  • Nakagawa K, Masumoto H, Sorimachi H, et al. Dissociation of m-calpain subunits occurs after autolysis of the N-terminus of the catalytic subunit, and is not required for activation. J Biochem. 2001 Nov;130(5):605–611. PubMed PMID: 11686922; eng.
  • Moldoveanu T, Hosfield CM, Lim D, et al. A Ca 2+ switch aligns the active site of calpain. Cell. 2002;108(5):649–660.
  • Reverter D, Sorimachi H, Bode W. The structure of calcium-free human m-calpain: implications for calcium activation and function. Trends Cardiovasc Med. 2001;11(6):222–229.
  • Hosfield CM, Elce JS, Davies PL, et al. Crystal structure of calpain reveals the structural basis for Ca2+‐dependent protease activity and a novel mode of enzyme activation. Embo J. 1999;18(24):6880–6889.
  • Maravall M, Mainen Z, Sabatini B, et al. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J. 2000;78(5):2655–2667.
  • Glading A, Bodnar RJ, Reynolds IJ, et al. Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol. 2004 Mar;24(6):2499–2512. PubMed PMID: 14993287; PubMed Central PMCID: PMCPMC355832.
  • Shao H, Chou J, Baty CJ, et al. Spatial localization of m-calpain to the plasma membrane by phosphoinositide biphosphate binding during epidermal growth factor receptor-mediated activation. Mol Cell Biol. 2006;26(14):5481–5496.
  • Zadran S, Jourdi H, Rostamiani K, et al. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. J Neurosci. 2010;30(3):1086–1095.
  • Croall DE, Ersfeld K. The calpains: modular designs and functional diversity. Genome Biol. 2007;8(6):218.
  • Davis TL, Walker JR, Finerty PJ, et al. The crystal structures of human calpains 1 and 9 imply diverse mechanisms of action and auto-inhibition. J Mol Biol. 2007;366(1):216–229.
  • Qian J, Cuerrier D, Davies PL, et al. Cocrystal structures of primed side-extending α-ketoamide inhibitors reveal novel calpain-inhibitor aromatic interactions. J Med Chem. 2008;51(17):5264–5270.
  • Hanna RA, Campbell RL, Davies PL. Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature. 2008;456(7220):409–412.
  • Campbell RL, Davies PL. Structure–function relationships in calpains. Biochem J. 2012;447(3):335–351.
  • Amini M, Ma C-L, Farazifard R, et al. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury. J Neurosci. 2013;33(13):5773–5784.
  • Wang Y, Briz V, Chishti A, et al. Distinct roles for mu-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 2013 Nov 27;33(48):18880–18892. PubMed PMID: 24285894; PubMed Central PMCID: PMCPMC3841454.
  • Bevers MB, Lawrence E, Maronski M, et al. Knockdown of m‐calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. J Neurochem. 2009;108(5):1237–1250.
  • Xu W, Wong TP, Chery N, et al. Calpain-mediated mGluR1α truncation: a key step in excitotoxicity. Neuron. 2007;53(3):399–412.
  • Papouin T, Oliet SH. Organization, control and function of extrasynaptic NMDA receptors. Phil Trans R Soc B. 2014;369(1654):20130601.
  • Chazot PL. The NMDA receptor NR2B subunit: a valid therapeutic target for multiple CNS pathologies. Curr Med Chem. 2004;11(3):389–396.
  • Krapivinsky G, Krapivinsky L, Manasian Y, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40(4):775–784.
  • Xu J, Kurup P, Zhang Y, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009 Jul 22;29(29):9330–9343. PubMed PMID: 19625523; PubMed Central PMCID: PMCPMC2737362.
  • Gladding CM, Sepers MD, Xu J, et al. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington’s disease mouse model. Hum Mol Genet. 2012;21(17):3739–3752.
  • Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci. 2016;74(7):1281–1296.
  • Zhao Q, Guo Z, Deng W, et al. Calpain 2-mediated autophagy defect increases susceptibility of fatty livers to ischemia–reperfusion injury. Cell Death Dis. 2016;7(4):e2186.
  • Xia H-G, Zhang L, Chen G, et al. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy. 2010;6(1):61–66.
  • Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8(10):1124.
  • Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4(5):295–305.
  • Gordy C, He Y-W. The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell. 2012;3(1):17–27.
  • Mukhopadhyay S, Panda PK, Sinha N, et al. Autophagy and apoptosis: where do they meet? Apoptosis. 2014;19(4):555–566.
  • Corazzari M, Fimia GM, Piacentini M. Dismantling the autophagic arsenal when it is time to die: concerted AMBRA1 degradation by caspases and calpains. Autophagy. 2012;8(8):1255–1257.
  • Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem. 2005;42(6):415–431.
  • Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. J Cell Biol. 2000;150(4):887–894.
  • Choi WS, Lee EH, Chung CW, et al. Cleavage of Bax is mediated by caspase‐dependent or‐independent calpain activation in dopaminergic neuronal cells: protective role of Bcl‐2. J Neurochem. 2001;77(6):1531–1541.
  • Takano J, Tomioka M, Tsubuki S, et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem. 2005;280(16):16175–16184.
  • Wang KK. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000;23(1):20–26.
  • Ruiz‐Vela A, De Buitrago GG, Martínez‐A C. Implication of calpain in caspase activation during B cell clonal deletion. Embo J. 1999;18(18):4988–4998.
  • Shintani-Ishida K, Yoshida K-I. Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia–reperfusion. Int J Cardiol. 2015;197:26–32.
  • Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol. 2000;62(3):273–295.
  • Yamashima T. Ca 2+-dependent proteases in ischemic neuronal death: a conserved ‘calpain–cathepsin cascade’from nematodes to primates. Cell Calcium. 2004;36(3):285–293.
  • Yamashima T. Reconsider Alzheimer’s disease by the ‘calpain–cathepsin hypothesis’—a perspective review. Prog Neurobiol. 2013;105:1–23.
  • Yamashima T. Can ‘calpain-cathepsin hypothesis’ explain Alzheimer neuronal death? Ageing Res Rev. 2016;32:169–179.
  • Clausen A, Xu X, Bi X, et al. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer’s disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline. J Alzheimer’s Dis. 2012;30(1):183–208.
  • Páramo B, Montiel T, Hernández-Espinosa DR, et al. Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage. Int J Biochem Cell Biol. 2013;45(11):2596–2604.
  • Yokoyama Y, Maruyama K, Yamamoto K, et al. The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage. Biochem Biophys Res Commun. 2014;451(4):510–515.
  • Chang H, Sheng JJ, Zhang L, et al. ROS‐induced nuclear translocation of calpain‐2 facilitates cardiomyocyte apoptosis in tail‐suspended rats. J Cell Biochem. 2015;116(10):2258–2269.
  • Saito T, Matsuba Y, Yamazaki N, et al. Calpain activation in Alzheimer’s model mice is an artifact of APP and presenilin overexpression. J Neurosci. 2016;36(38):9933–9936.
  • Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93(5):1015–1034.
  • Lu X, Rong Y, Baudry M. Calpain-mediated degradation of PSD-95 in developing and adult rat brain. Neurosci Lett. 2000;286(2):149–153.
  • Yuen EY, Ren Y, Yan Z. Postsynaptic density-95 (PSD-95) and calcineurin control the sensitivity of N-methyl-D-aspartate receptors to calpain cleavage in cortical neurons. Mol Pharmacol. 2008;74(2):360–370.
  • Gascón S, Sobrado M, Roda JM, et al. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry. 2008;13(1):99–114.
  • Su SC, Tsai L-H. Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol. 2011;27:465–491.
  • Meyer DA, Torres-Altoro MI, Tan Z, et al. Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci. 2014;34(24):8259–8267.
  • Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–188.
  • Chen M, He H, Zhan S, et al. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem. 2001;276(33):30724–30728.
  • Atencio IA, Ramachandra M, Shabram P, et al. Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines. Cell Growth Differ. 2000;11(5):247–253.
  • Briz V, Hsu Y-T, Li Y, et al. Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis. J Neurosci. 2013;33(10):4317–4328.
  • Jung CH, Ro S-H, Cao J, et al. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–1295.
  • Wang Y, Lopez D, Davey PG, et al. Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiol Dis. 2016 Sep;93:121–128. PubMed PMID: 27185592.
  • Chiu K, Lam TT, Li WW Y, et al. Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res. 2005 Jun 7;1046(1–2):207–215. PubMed PMID: 15878434.
  • Shimazawa M, Suemori S, Inokuchi Y, et al. A novel calpain inhibitor, ((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), reduces murine retinal cell death in vitro and in vivo. J Pharmacol Exp Ther. 2010 Feb;332(2):380–387. PubMed PMID: 19910537.
  • Wang Y, Zhu G, Briz V, et al. A molecular brake controls the magnitude of long-term potentiation. Nat Commun. 2014;5:3051. PubMed PMID: 24394804; PubMed Central PMCID: PMCPMC3895372.
  • Li Z, Ortega-Vilain A-C, Patil GS, et al. Novel peptidyl α-keto amide inhibitors of calpains and other cysteine proteases. J Med Chem. 1996;39(20):4089–4098.
  • Almasieh M, Wilson AM, Morquette B, et al. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012 Mar;31(2):152–181. PubMed PMID: 22155051.
  • Wang L, Cioffi GA, Cull G, et al. Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci. 2002 Apr;43(4):1088–1094. PubMed PMID: 11923250.
  • Chi W, Li F, Chen H, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1beta production in acute glaucoma. Proc Natl Acad Sci USA. 2014 Jul 29;111(30):11181–11186. PubMed PMID: 25024200; PubMed Central PMCID: PMCPMC4121847.
  • Russo R, Berliocchi L, Adornetto A, et al. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2011;2:e144. PubMed PMID: 21490676; PubMed Central PMCID: PMCPMC3122060.
  • Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014 Apr 16;82(2):279–293. PubMed PMID: 24742457.
  • Brassai A, Suvanjeiev R-G, Bán E-G, et al. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull. 2015;112:1–6.
  • Bai N, Aida T, Yanagisawa M, et al. NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina. Molecular Brain. 2013;6(1):1.
  • Piras A, Gianetto D, Conte D, et al. Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PloS One. 2011;6(7):e22514.
  • Wei T, Kang Q, Ma B, et al. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med. 2015;9(2):476–482.
  • Liton PB. The autophagic lysosomal system in outflow pathway physiology and pathophysiology. Exp Eye Res. 2016;144:29–37.
  • Liu S, Yin F, Zhang J, et al. The role of calpains in traumatic brain injury. Brain Inj. 2014;28(2):133–137.
  • Kampfl A, Posmantur R, Zhao X, et al. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: a review and update. J Neurotrauma. 1997;14(3):121–134.
  • Wang KK, Larner SF, Robinson G, et al. Neuroprotection targets after traumatic brain injury. Curr Opin Neurol. 2006;19(6):514–519.
  • Pike BR, Zhao X, Newcomb JK, et al. Regional calpain and caspase‐3 proteolysis of α‐spectrin after traumatic brain injury. Neuroreport. 1998;9(11):2437–2442.
  • Pike BR, Flint J, Dutta S, et al. Accumulation of non‐erythroid αII‐spectrin and calpain‐cleaved αII‐spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem. 2001;78(6):1297–1306.
  • Pineda JA, Lewis SB, Valadka AB, et al. Clinical significance of α II-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;24(2):354–366.
  • Brophy GM, Pineda JA, Papa L, et al. αII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma. 2009;26(4):471–479.
  • Mondello S, Robicsek SA, Gabrielli A, et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27(7):1203–1213.
  • Siman R, Giovannone N, Hanten G, et al. Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients. Front Neurol. 2013;4:190. PubMed PMID: 24302918; PubMed Central PMCID: PMCPMC3831148.
  • Siman R Shahim P, Tegner Y, Blennow K, et al. Serum  SNTF increases in concussed professional ice hockey players and relates to the severity of postconcussion symptome. J Neurotrauma. 2015;32(17):1294–1300.
  • Posmantur R, Kampfl A, Siman R, et al. A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience. 1997;77(3):875–888.
  • Saatman KE, Murai H, Bartus RT, et al. Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. Proc Natl Acad Sci USA. 1996 Apr 16;93(8):3428–3433. PubMed PMID: 8622952; PubMed Central PMCID: PMCPMC39625.
  • Yan -X-X, Jeromin A. Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr Transl Geriatr Exp Gerontol Rep. 2012;1(2):85–93.
  • Schoch KM, Reyn CR, Bian J, et al. Brain injury‐induced proteolysis is reduced in a novel calpastatin‐overexpressing transgenic mouse. J Neurochem. 2013;125(6):909–920.
  • Thompson SN, Carrico KM, Mustafa AG, et al. A pharmacological analysis of the neuroprotective efficacy of the brain- and cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J Neurotrauma. 2010 Dec;27(12):2233–2243. PubMed PMID: 20874056; PubMed Central PMCID: PMCPMC2996835.
  • Bains M, Cebak JE, Gilmer LK, et al. Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic brain injury model. J Neurochem. 2013 Apr;125(1):125–132. PubMed PMID: 23216523.
  • Seubert P, Baudry M, Dudek S, et al. Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse. 1987;1(1):20–24.
  • Wang Y, Liu Y, Lopez D, et al. Protection against TBI-induced neuronal death with post-treatment with a selective calpain-2 inhibitor in mice. J Neurotrauma. 2017.
  • Liu Y, Wang Y, Zhu G, et al. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology. 2016 Feb 18;105:471–477. PubMed PMID: 26907807.
  • Sarkar C, Zhao Z, Aungst S, et al. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10(12):2208–2222.
  • Lipinski MM, Wu J, Faden AI, et al. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal. 2015;23(6):565–577.
  • Sun L, Zhao M, Wang Y, et al. Neuroprotective effects of miR-27a against traumatic brain injury via suppressing FoxO3a-mediated neuronal autophagy. Biochem Biophys Res Commun. 2017;482(4):1141–1147.
  • Clark RS, Bayir H, Chu CT, et al. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008;4(1):88–90.
  • Luo C-L, Li B-X, Li -Q-Q, et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience. 2011;184:54–63.
  • Wang D, Zhang J, Jiang W, et al. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy. 2017;13(5):914–927.
  • Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat. 2015;11:297.
  • Koumura A, Nonaka Y, Hyakkoku K, et al. A novel calpain inhibitor,((1S)-1 ((((1S)-1-benzyl-3-cyclopropylamino-2, 3-di-oxopropyl) amino) carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience. 2008;157(2):309–318.
  • Anagli J, Han Y, Stewart L, et al. A novel calpastatin-based inhibitor improves postischemic neurological recovery. Biochem Biophys Res Commun. 2009;385(1):94–99.
  • Kobeissy FH, Liu MC, Yang Z, et al. Degradation of βII-spectrin protein by calpain-2 and caspase-3 under neurotoxic and traumatic brain injury conditions. Mol Neurobiol. 2015;52(1):696–709.
  • Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, et al. Potential use of calpain inhibitors as brain injury therapy. In: Kobeissy FH, editor.Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; Chapter 40. 2015.
  • Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharmaceutica Sinica B. 2015;5(6):506–519.
  • Hong SC, Goto Y, Lanzino G, et al. Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke. 1994 Mar;25(3):663–669. PubMed PMID: 8128523.
  • Bartus RT, Hayward NJ, Elliott PJ, et al. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke. 1994 Nov;25(11):2265–2270. PubMed PMID: 7974554.
  • Bartus RT, Baker KL, Heiser AD, et al. Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab. 1994 Jul;14(4):537–544. PubMed PMID: 8014200.
  • Li PA, Howlett W, He QP, et al. Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia. Neurosci Lett. 1998 May 8;247(1):17–20. PubMed PMID: 9637399.
  • Markgraf CG, Velayo NL, Johnson MP, et al. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke. 1998 Jan;29(1):152–158. PubMed PMID: 9445345.
  • Tsubokawa T, Solaroglu I, Yatsushige H, et al. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke. 2006 Jul;37(7):1888–1894. PubMed PMID: 16763180.
  • Stracher A. Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann N Y Acad Sci. 1999;884(1):52–59.
  • Ray SK, Banik NL. Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Current Drug Targets-CNS & Neurological Disorders. 2003;2(3):173–189.
  • Camins A, Verdaguer E, Folch J, et al. The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect. 2006;19(8):453–460.
  • Samantaray S, Ray SK, Banik NL. Calpain as a potential therapeutic target in Parkinson’s disease. CNS Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS Neurological Disorders). 2008;7(3):305–312.
  • Adamec E, Mohan P, Vonsattel JP, et al. Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2. Acta Neuropathol. 2002;104(1):92–104.
  • Grynspan F, Griffin W, Cataldo A, et al. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res. 1997;763(2):145–158.
  • Yin Y, Wang Y, Gao D, et al. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2. Sci Rep. 2016;6:27283.
  • Wang Y, Hall RA, Lee M, et al. The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep. 2017;7.
  • Berger Z, Roder H, Hanna A, et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci. 2007;27(14):3650–3662.
  • Lasagna-Reeves CA, Castillo-Carranza LD, Kayed R, et al. Tau oligomers as potential targets for immunotherapy for Alzheimer’s disease and tauopathies. Curr Alzheimer Res. 2011;8(6):659–665.
  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700.
  • Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501(7465):45–51.
  • Lu S, Kanekura K, Hara T, et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci. 2014;111(49):E5292–E5301.
  • Hübener J, Weber JJ, Richter C, et al. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum Mol Genet. 2013;22(3):508–518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.