905
Views
52
CrossRef citations to date
0
Altmetric
Review

Kinin B1 receptors as a therapeutic target for inflammation

& ORCID Icon
Pages 31-44 | Received 01 Sep 2017, Accepted 22 Nov 2017, Published online: 30 Nov 2017

References

  • Gilroy D, De Maeyer R. New insights into the resolution of inflammation. Semin Immunol. 2015;27(3):161–168.
  • Skidgel RA, Erdös EG. Cellular carboxypeptidases. Immunol Rev. 1998;61:129–141.
  • Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins,kininogens, and kininases. Pharmacol Rev. 1992;44(1):1–80.
  • Moreau ME, Garbacki N, Molinaro G, et al. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci. 2005;99(1):6–38.
  • Pesquero JB, Bader M. Molecular biology of the kallikrein-kinin system: from structure to function. Braz J Med Biol Res. 1998;31:1197–1203.
  • Bader M, Ed.. Kinins, Walter de Gruyter GmbH. Berlin, Germany. 2011.
  • Hess JF, Borkowski JA, Young GS, et al. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun. 1992;184(1):260–268.
  • Menke JG, Borkowski JA, Bierilo KK, et al. Expression cloning of a human B1 bradykinin receptor. J Biol Chem. 1994;269(34):21583–21586.
  • Shughrue PJ, Ky B, Austin CP. Localization of B1 bradykinin receptor mRNA in the primate brain and spinal cord: an in situ hybridization study. J Comp Neurol. 2003;465(3):372–384.
  • Marceau F, Lussier A, Regoli D, et al. Pharmacology of kinins: their relevance to tissue injury and inflammation. Gen Pharmacol. 1983;14(2):209–229.
  • Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci. 1993;16(3):99–104.
  • Couture R, Harrisson M, Vianna RM, et al. Kinin receptors in pain and inflammation. Eur J Pharmacol. 2001;429(1–3):161–176.
  • Walker K, Perkins M, Dray A. Kinins and kinin receptors in the nervous system. Neurochem Int. 1995;26(1):1-16; discussion 17-26.
  • Wu J, Akaike T, Hayashida K, et al. Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer. 2002;98(1):29–35.
  • Böckmann S, Paegelow I. Kinins and kinin receptors: importance for the activation of leukocytes. J Leukoc Biol. 2000;68(5):587–592.
  • Rochee Silva M, Beraldo WT, et al. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol. 1949;156(2):261–273.
  • Holdstock DJ, Mathias AP, Schachter M. A comparative study of kinin, kallidin, and bradykinin. Br J Pharmacol Chemother. 1957;12(2):149–158.
  • Davies GE, Lowe JS. Chemical mediators of inflammation in guinea-pig skin. Trans St Johns Hosp Dermatol Soc. 1962;48:157–162.
  • Stern P, Nikulin A, Ferluga J. The role of histamine and bradykinin in the inflammatory process. Arch Int Pharmacodyn Ther. 1962;140:528–538.
  • Lewis GP. Plasma kinins and inflammation. Metabolism. 1964;13:1256–1263.
  • Drouin JN, Gaudreau P, St-Pierre S, et al. Biological activities of kinins modified at the N- or at the C-terminal end. Can J Physiol Pharmacol. 1979;57(9):1018–1023.
  • Marceau F, Barabé J, St-Pierre S, et al. Kinin receptors in experimental inflammation. Can J Physiol Pharmacol. 1980;58(5):536–542.
  • Regoli DC, Marceau F, Lavigne J. Induction of beta 1-receptors for kinins in the rabbit by a bacterial lipopolysaccharide. Eur J Pharmacol. 1981;71(1):105–115.
  • Dray A. Kinins and their receptors in hyperalgesia. Can J Physiol Pharmacol. 1997;75(6):704–712.
  • Calixto JB, Medeiros R, Fernandes ES, et al. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol. 2004;143(7):803–818.
  • Leeb-Lundberg LM, Marceau F, Müller-Esterl W, et al. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27–77.
  • Duchene J, Ahluwalia A. The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol. 2009;9(2):125–131.
  • Couture R, Blaes N, Girolami JP. Kinin receptors in vascular biology and pathology. Curr Vasc Pharmacol. 2014;12(2):223–248.
  • Marceau F. Kinin B1 receptors: a review. Immunopharmacology. 1995;30(1):1–26.
  • Donaldson LF, Hanley MR, Villablanca AC. Inducible receptors. Trends Pharmacol Sci. 1997;18(5):171–181.
  • Kang DS, Gustafsson C, Mörgelin M, et al. B1 bradykinin receptor homo-oligomers in receptor cell surface expression and signaling: effects of receptor fragments. Mol Pharmacol. 2005;67(1):309–318.
  • Dixon DA, Kaplan CD, McIntyre TM, et al. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3ʹ-untranslated region. J Biol Chem. 2000 21;275(16):11750–11757.
  • Zhou X, Polgar P, Taylor L. Roles for interleukin-1beta, phorbol ester and a post-transcriptional regulator in the control of bradykinin B1 receptor gene expression. Biochem J. 1998. 15. 330(Pt 1):361–366.
  • Zhou X, Prado GN, Taylor L, et al. Regulation of inducible bradykinin B1 receptor gene expression through absence of internalization and resensitization. J Cell Biochem. 2000;78(3):351–362.
  • Schanstra JP, Bataillé E, Marin Castaño ME, et al. The B1-agonist [des-Arg10]-kallidin activates transcription factor NF-kappaB and induces homologous upregulation of the bradykinin B1-receptor in cultured human lung fibroblasts. J Clin Invest. 1998;101(10):2080–2091.
  • Ni A, Chao L, Chao J. Transcription factor nuclear factor kappaB regulates the inducible expression of the human B1 receptor gene in inflammation. J Biol Chem. 1998;273(5):2784–2791.
  • Sardi SP, Rey-Ares V, Pujol-Lereis VA, et al. Further pharmacological evidence of nuclear factor-kappa B pathway involvement in bradykinin B1 receptor-sensitized responses in human umbilical vein. J Pharmacol Exp Ther. 2002;301(3):975–980.
  • Medeiros R, Cabrini DA, Ferreira J, et al. Bradykinin B1 receptor expression induced by tissue damage in the rat portal vein: a critical role for mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. Circ Res. 2004 28;94(10):1375–1382.
  • Passos GF, Fernandes ES, Campos MM, et al. Kinin B1 receptor up-regulation after lipopolysaccharide administration: role of proinflammatory cytokines and neutrophil influx. J Immunol. 2004 1;172(3):1839–1847.
  • Merino VF, Silva JA Jr, Araújo RC, et al. Molecular structure and transcriptional regulation by nuclear factor-kappaB of the mouse kinin B1 receptor gene. Biol Chem. 2005;386(6):515–522.
  • Deblois D, Bouthillier J, Marceau F, et al. Effect of glucocorticoids, monoklines and growth factors on the spontaneously developing responses of the rabit isolated aorta to des-Arg9-bradykinin. Br J Pharmacol. 1988;93(4):969–977.
  • Koumbadinga GA, Desormeaux A, Adam A, et al. Effect of interferon-γ on inflammatory cytokine-induced bradykinin B1 receptor expression in human vascular cells. Eur J Pharmacol. 2010;647(1–3):117–125.
  • Campos MM, Souza GE, Calixto JB. Modulation of kinin B1 but not B2 receptors mediated rat paw edema by IL-1beta and TNFalpha. Peptides. 1998;19(7):1269–1276.
  • Marceau F, Bachvarov DR. Kinin receptors. Clin Rev Allergy Immunol. 1998;16(4):385–401.
  • Ghebrehiwet B, Ji Y, Valentino A, et al. Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells. J Immunol. 2014;192(1):377–384.
  • Lahti A, Jalonen U, Kankaanranta H, et al. c-Jun NH2-terminal kinase inhibitor anthra(1,9-cd)pyrazol-6(2H)-one reduces inducible nitric-oxide synthase expression by destabilizing mRNA in activated macrophages. Mol Pharmacol. 2003;64(2):308–315.
  • Larrivée JF, Bachvarov DR, Houle F, et al. Role of the mitogen-activated protein kinases in the expression of the kinin B1 receptors induced by tissue injury. J Immunol. 1998;160(3):1419–1426.
  • Zhou X, Prado GN, Chai M, et al. Posttranscriptional destabilization of the bradykinin B1 receptor messenger RNA: cloning and functional characterization of the 3ʹ-untranslated region. Mol Cell Biol Res Commun. 1999;1(1):29–35.
  • Haddad EB, Fox AJ, Rousell J, et al. Post-transcriptional regulation of bradykinin B1 and B2 receptor gene expression in human lung fibroblasts by tumor necrosis factor-alpha: modulation by dexamethasone. Mol Pharmacol. 2000;57(6):1123–1131.
  • Campos MM, Souza GE, Calixto JB. In vivo B1 kinin-receptor upregulation. Evidence for involvement of protein kinases and nuclear factor kappaB pathways. Br J Pharmacol. 1999;27(8):1851–1859.
  • Phagoo SB, Reddi K, Anderson KD, et al. Bradykinin B1 receptor up-regulation by interleukin-1beta and B1 agonist occurs through independent and synergistic intracellular signaling mechanisms in human lung fibroblasts. J Pharmacol Exp Ther. 2001;298(1):77–85.
  • Moreau ME, Bawolak MT, Morissette G, et al. Role of nuclear factor-kappaB and protein kinase C signaling in the expression of the kinin B1 receptor in human vascular smooth muscle cells. Mol Pharmacol. 2007;71(3):949–956.
  • Fortin JP, Bouthillier J, Marceau F. High agonist-independent clearance of rabbit B1 receptors on cultured cells. Am J Physiol Heart Cir Physiol. 2003;284:H1647–H1654.
  • Enquist J, Skröder C, Whistler JL, et al. LM. Kinins promote B2 receptor endocytosis and delay constitutive B1 receptor endocytosis. Mol Pharmacol. 2007;71(2):494–507.
  • Kang DS, Ryberg K, Mörgelin M, et al. Spontaneous formation of a proteolytic B1 and B2 bradykinin receptor complex with enhanced signaling capacity. J Biol Chem. 2004 21;279(21):22102–22107.
  • Yanaga F, Hirata M, Koga T. Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim Biophys Acta. 1991;1094(2):139–146.
  • Liao JK, Homcy CJ. The G proteins of the G alpha i and G alpha q family couple the bradykinin receptor to the release of endothelium-derived relaxing factor. J Clin Invest. 1993;92(5):2168–2172.
  • Austin CE, Faussner A, Robinson HE, et al. Stable expression of the human kinin B1 receptor in Chinese hamster ovary cells. Characterization of ligand binding and effector pathways. J Biol Chem. 1997;272(17):11420–11425.
  • Xie P, Browning DD, Hay N, et al. Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem. 2000;275(32):24907–24914.
  • Prado GN, Taylor L, Zhou X, et al. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J Cell Physiol. 2002;193(3):275–286.
  • Mathis SA, Criscimagna NL, Leeb-Lundberg LM. B1 and B2 kinin receptors mediate distinct patterns of intracellular Ca2+ signaling in single cultured vascular smooth muscle cells. Mol Pharmacol. 1996;50(1):128–139.
  • Faussner A, Bathon JM, Proud D. Comparison of the responses of B1 and B2 kinin receptors to agonist stimulation. Immunopharmacology. 1999;45(1–3):13–20.
  • Marceau F, Sabourin T, Houle S, et al. Kinin receptors: functional aspects. Int Immunopharmacol. 2002;2(13–14):1729–1739.
  • Leeb-Lundberg LM, Kang DS, Lamb ME, et al. The human B1 bradykinin receptor exhibits high ligand-independent, constitutive activity. Roles of residues in the fourth intracellular and third transmembrane domains. J Biol Chem. 2001 23;276(12):8785–8792.
  • Kuhr F, Lowry J, Zhang Y, et al. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides. 2010;44(2):145–154.
  • Zhang Y, Brovkovych V, Brovkovych S, et al. Dynamic receptor-dependent activation of inducible nitric-oxide synthase by ERK-mediated phosphorylation of Ser745. J Biol Chem. 2007;282(44):32453–32461.
  • Tropea MM, Gummelt D, Herzig MS, et al. B1 and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor-specific stimulation of inositol phosphate formation and arachidonic acid release by des-Arg9-bradykinin and bradykinin. J Pharmacol Exp Ther. 1993;264(2):930–937.
  • Bascands JL, Pecher C, Girolami JP. Indirect inhibition by bradykinin of cyclic AMP generation in isolated rat glomeruli and mesangial cells. Mol Pharmacol. 1993;44(4):818–826.
  • Christopher J, Velarde V, Jaffa AA. Induction of B(1)-kinin receptors in vascular smooth muscle cells: cellular mechanisms of map kinase activation. Hypertension. 2001;38:602–605.
  • Dixon BS, Evanoff D, Fang WB, et al. Bradykinin B1 receptor blocks PDGF-induced mitogenesis by prolonging ERK activation and increasing p27Kip1. Am J Physiol Cell Physiol. 2002;283(1):C193–203.
  • Ehrenfeld P, Matus CE, Pavicic F, et al. Kinin B1 receptor activation turns on exocytosis of matrix metalloprotease-9 and myeloperoxidase in human neutrophils: involvement of mitogen-activated protein kinase family. J Leukoc Biol. 2009;86(5):1179–1189.
  • Duchene J, Lecomte F, Ahmed S, et al. A novel inflammatory pathway involved in leukocyte recruitment: role for the kinin B1 receptor and the chemokine CXCL5. J Immunol. 2007;179(7):4849–4856.
  • Zhang X, Tan F, Skidgel RA. Carboxypeptidase M is a positive allosteric modulator of the kinin B1 receptor. J Biol Chem. 2013;288(46):33226–33240.
  • Regoli D, Nsa Allogho S, Rizzi A, et al. Bradykinin receptors and their antagonists. Eur J Pharmacol. 1998;348(1):1–10.
  • Hess JF, Hey PJ, Chen TB, et al. Molecular and pharamacological diversity of the kinin B1 receptor. Int Immunopharmacol. 2002;2(13–14):1747–1754.
  • Pesquero JB, Bader M. Genetically altered animal models in the kallikrein-kinin system. Biol Chem. 2006;387(2):119–126.
  • Regoli D, Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980;32(1):1–46.
  • Gobeil F, Neugebauer W, Filteau C, et al. Structure-activity studies of B1 receptor-related peptides. Antagonists Hypertension. 1996;28(5):833–839.
  • Stewart JM, Gera L, Hanson W, et al. A new generation of bradykinin antagonists. Immunopharmacology. 1996;33(1–3):51–60.
  • Gobeil F Jr, Sirois P, Regoli D. Preclinical pharmacology, metabolic stability, pharmacokinetics and toxicology of the peptidic kinin B1 receptor antagonist R-954. Peptides. 2014;52:82–89.
  • Fincham CI, Bressan A, Paris M, et al. Bradykinin receptor antagonists–a review of the patent literature 2005-2008. Expert Opin Ther Pat. 2009;19(7):919–941.
  • Huang H, Player MR. Bradykinin B1 receptor antagonists as potential therapeutic agents for pain. J Med Chem. 2010;53(15):5383–5399.
  • Bozó É, Éles J, Keserű GM. Bradykinin B1 receptor antagonists: a patent update 2009-2012. Expert Opin Ther Pat. 2012;22(12):1443–1452.
  • Gougat J, Ferrari B, Sarran L, et al. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino] propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl -N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther. 2004;309(2):661–669.
  • Porreca F, Vanderah TW, Guo W, et al. Antinociceptive pharmacology of N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]methyl]-2-[2-[[(4-methoxy-2,6-dimethyl phenyl) sulfonyl]methylamino]ethoxy]-N-methylacetamide, fumarate (LF22-0542), a novel nonpeptidic bradykinin B1 receptor antagonist. J Pharmacol Exp Ther. 2006;318(1):195–205.
  • Barth M, Bondoux M, Luccarini JM, et al. From bradykinin B2 receptor antagonists to orally active and selective bradykinin B1 receptor antagonists. J Med Chem. 2012;55(6):2574–2584.
  • Pouliot M, Talbot S, Sénécal J, et al. Ocular application of the kinin B1 receptor antagonist LF22-0542 inhibits retinal inflammation and oxidative stress in streptozotocin-diabetic rats. PLoS One. 2012;7(3):e33864.
  • Kuduk SD, Di Marco CN, Chang RK, et al. Development of orally bioavailable and CNS penetrant biphenylaminocyclopropane carboxamide bradykinin B1 receptor antagonists. J Med Chem. 2007 25;50(2):272–282.
  • Feng DM, DiPardo RM, Wai JM, et al. A new class of bradykinin B1 receptor antagonists with high oral bioavailability and minimal PXR activity. Bioorg Med Chem Lett. 2008 15;18(2):682–687.
  • Kuduk SD, Bock MG. Bradykinin B1 receptor antagonists as novel analgesics: a retrospective of selected medicinal chemistry developments. Curr Top Med Chem. 2008;8(16):1420–1430.
  • Tang C, Carr BA, Poignant F, et al. CYP2C75-involved autoinduction of metabolism in rhesus monkeys of methyl 3-chloro-3ʹ-fluoro-4ʹ-{(1R)-1-[({1-[(trifluoroacetyl)amino]cyclopropyl}carbonyl)a mino]ethyl}-1,1ʹ-biphenyl-2-carboxylate (MK-0686), a bradykinin B1 receptor antagonist. J Pharmacol Exp Ther. 2008;325(3):935–946.
  • D’Amico DC, Aya T, Human J, et al. Identification of a nonpeptidic and conformationally restricted bradykinin B1 receptor antagonist with anti-inflammatory activity. J Med Chem. 2007 22;50(4):607–610.
  • Biswas K, Li A, Chen JJ, et al. Potent nonpeptide antagonists of the bradykinin B1 receptor: structure-activity relationship studies with novel diaminochroman carboxamides. J Med Chem. 2007 3;50(9):2200–2212.
  • Biswas K, Aya T, Qian W, et al. Aryl sulfones as novel bradykinin B1 receptor antagonists for treatment of chronic pain. Bioorg Med Chem Lett. 2008 1;18(17):4764–4769.
  • Chen JJ, Qian W, Biswas K, et al. Discovery of dihydroquinoxalinone acetamides containing bicyclic amines as potent Bradykinin B1 receptor antagonists. Bioorg Med Chem Lett. 2008;18(16):4477–4481.
  • Doods H, Hauel N, Kirsten A, et al. BI 113823, a novel B1 receptor antagonist exhibiting antinociceptive properties in inflammatory pain models. Pain Practice. 2012;12:18.
  • Ritchie TJ, Dziadulewicz EK, Culshaw AJ, et al. Potent and orally bioavailable non-peptide antagonists at the human bradykinin B(1) receptor based on a 2-alkylamino-5-sulfamoylbenzamide core. J Med Chem. 2004 9;47(19):4642–4644.
  • Fox A, Kaur S, Li B, et al. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br J Pharmacol. 2005;144(7):889–899.
  • Eles J, Beke G, Vágó I, et al. Quinolinyl- and phenantridinyl-acetamides as bradykinin B1 receptor antagonists. Bioorg Med Chem Lett. 2012;22(9):3095–3099.
  • Schaudt M, Locardi E, Zischinsky G, et al. Novel small molecule bradykinin B1 receptor antagonists. Part 1: benzamides and semicarbazides. Bioorg Med Chem Lett. 2010;20(3):1225–1228.
  • Zischinsky G, Stragies R, Schaudt M, et al. Novel small molecule bradykinin B1 receptor antagonists. Part 2: 5-membered diaminoheterocycles. Bioorg Med Chem Lett. 2010;20(3):1229–1232.
  • Schnatbaum K, Schaudt M, Stragies R, et al. Novel small molecule bradykinin B1 receptor antagonists. Part 3: hydroxyurea derivatives. Bioorg Med Chem Lett. 2010;20(3):1233–1236.
  • Horlick RA, Ohl1meyer MH, Stroke IL, et al. Small molecule antagonists of the bradykinin B1 receptor. Immunopharmacology. 1999;43(2–3):169–177.
  • Guo Q, Chandrasekhar J, Ihle D, et al. 1-Benzylbenzimidazoles: the discovery of a novel series of bradykinin B(1) receptor antagonists. Bioorg Med Chem Lett. 2008 15;18(18):5027–5031.
  • Hawkinson JE, Szoke BG, Garofalo AW, et al. Pharmacological, pharmacokinetic, and primate analgesic efficacy profile of the novel bradykinin B1 Receptor antagonist ELN441958. J Pharmacol Exp Ther. 2007;322(2):619–630.
  • Catanzaro OL, Dziubecki D, Obregon P, et al. Antidiabetic efficacy of bradykinin antagonist R-954 on glucose tolerance test in diabetic type 1 mice. Neuropeptides. 2010;44(2):187–189.
  • Tidjane N, Gaboury L, Couture R. Cellular localisation of the kinin B1R in the pancreas of streptozotocin-treated rat and the anti-diabetic effect of the antagonist SSR240612. Biol Chem. 2016;397(4):323–336.
  • Gabra BH, Sirois P. Beneficial effect of chronic treatment with the selective bradykinin B1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides. 2003;24(8):1131–1139.
  • Gabra BH, Sirois P. Hyperalgesia in non-obese diabetic (NOD) mice: a role for the inducible bradykinin B1 receptor. Eur J Pharmacol. 2005. 2. 514(1):61–67.
  • Lawson SR, Gabra BH, Nantel F, et al. Effects of a selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: distinct vasculopathic profile of major keyorgans. Eur J Pharmacol. 2005 2;514(1):69–78.
  • Kakiko M, Sullivan KA, Bakus C, et al. Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neurophathy, and bone mineral loss in Akita diabetic mice. Proc Natl Acad Sci. 2010;107(22):10190–10195.
  • Pouliot M, Hétu S, Lahjouji K, et al. Modulation of retinal blood flow by kinin B₁ receptor in Streptozotocin-diabetic rats. Exp Eye Res. 2011;92(6):482–489.
  • Catanzaro O, Capponi JA, Michieli J, et al. Bradykinin B₁ antagonism inhibits oxidative stress and restores Na+K+ ATPase activity in diabetic rat peripheral nervous system. Peptides. 2013;44:100–104.
  • Westermann D, Walther T, Savvatis K, et al. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009;58(6):1373–1381.
  • Mori MA, Sales VM, Motta FL, et al. Kinin B1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS One. 2012;7(9):e44782.
  • Mori MA, Araújo RC, Reis FC, et al. Kinin B1 receptor deficiency leads to leptin hypersensitivity and resistance to obesity. Diabetes. 2008;57(6):1491–1500.
  • Mori MA, Araújo RC, Pesquero JB. Kinin B1 receptor stimulation modulates leptin homeostasis. Evidence for an insulin-dependent mechanism. Int Immunopharmacol. 2008;8(2):242–246.
  • Fonseca RG, Sales VM, Ropelle E, et al. Lack of kinin B₁ receptor potentiates leptin action in the liver. J Mol Med (Berl). 2013;91(7):851–860.
  • Talbot S, Dias JP, El Midaoui A, et al. Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats. Can J Physiol Pharmacol. 2016;94(7):752–757.
  • Kuebler JF, Schremmer-Danninger E, et al. Kinin-B1 receptors in ischaemia-induced pancreatitis: functional importance and cellular localisation. Biol Chem. 2003;384(9):1311–1319.
  • Lacoste B, Tong XK, Lahjouji K, et al. Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation. 2013;10:57.
  • Amaral FA, Lemos MT, Dong KE, et al. Participation of kinin receptors on memory impairment after chronic infusion of human amyloid-beta 1-40 peptide in mice. Neuropeptides. 2010;44(2):93–97.
  • Prediger RD, Medeiros R, Pandolfo P, et al. Genetic deletion or antagonism of kinin B(1) and B(2) receptors improves cognitive deficits in a mouse model of Alzheimer’s disease. Neuroscience. 2008;151(3):631–643.
  • Passos GF, Medeiros R, Cheng D, et al. The bradykinin B1 receptor regulates Aβ deposition and neuroinflammation in Tg-SwD1 mice. Am J Pathol. 2013;182(5):1740–1749.
  • Dong-Creste KE, Baraldi-Tornisielo T, et al. Kinin B1 receptor mediates memory impairment in the rat hippocampus. Biol Chem. 2016;397(4):353–364.
  • Albert-Weissenberger C, Stetter C, Meuth SG, et al. Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation. J Cereb Blood Flow Metab. 2012;32(9):1747–1756.
  • Trabold R, Erös C, Zweckberger K, et al. The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab. 2010;30(1):130–139.
  • Liu Y, Liu J, Li M, et al. The effect of kinin B1 receptor on chronic itching sensitization. Mol Pain. 2015 14(11):70.
  • Feng J, Chen Y, Xiong J, et al. The kinin B1 receptor mediates alloknesis in a murine model of inflammation. Neurosci Lett. 2014;560:31–35.
  • Liang J, He Y, Ji W. Bradykinin-evoked scratching responses in complete Freund’s adjuvant-inflamed skin through activation of B1 receptor. Exp Biol Med (Maywood). 2012;237(3):318–326.
  • Pietrovski EF, Paludo KS, Mendes DA, et al. B1 and B2 kinin receptor participation in hyperproliferative and inflammatory skin processes in mice. J Dermatol Sci. 2011;64(1):23–30.
  • Soley Bda S, Morais RL, Pesquero JB, et al. Kinin receptors in skin wound healing. J Dermatol Sci. 2016;82(2):95–105.
  • Pietrovski EF, Otuki MF, Regoli D, et al. The non-peptide kinin receptor antagonists FR 173657 and SSR 240612: preclinical evidence for the treatment of skin inflammation. Regul Pept. 2009;152(1–3):67–72.
  • Gonçalves-Zillo TO, Pugliese LS, Sales VM, et al. Increased bone loss and amount of osteoclasts in kinin B1 receptor knockout mice. J Clin Periodontol. 2013;40(7):653–660.
  • Kaufman GN, Zaouter C, Valteau B, et al. Nociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type A and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis. Arthritis Res Ther. 2011;13(3):R76.
  • Cignachi NP, Pesquero JB, Oliveira RB, et al. Kinin B1 receptor deletion affects bone healing in type 1 diabetic mice. J Cell Physiol. 2015;230(12):3019–3028.
  • Silva CR, Oliveira SM, Hoffmeister C, et al. The role of kinin B1 receptor and the effect of angiotensin I-converting enzyme inhibition on acute gout attacks in rodents. Ann Rheum Dis. 2016;75(1):260–268.
  • Klein J, Gonzalez J, Decramer S, et al. Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol. 2010;21(7):1157–1164.
  • Klein J, Gonzalez J, Duchene J, et al. Delayed blockade of the kinin B1 receptor reduces renal inflammation and fibrosis in obstructive nephropathy. Faseb J. 2009;23(1):134–142.
  • Wang PH, Cenedeze MA, Campanholle G, et al. Deletion of bradykinin B1 receptor reduces renal fibrosis. Int Immunopharmacol. 2009;9(6):653–657.
  • Estrela GR, Wasinski F, Almeida DC, et al. Kinin B1 receptor deficiency attenuates cisplatin-induced acute kidney injury by modulating immune cell migration. J Mol Med (Berl). 2014;92(4):399–409.
  • Wang PH, Campanholle G, Cenedeze MA, et al. Bradykinin [corrected] B1 receptor antagonism is beneficial in renal ischemia-reperfusion injury. PLoS One. 2008;3(8):e3050.
  • Westermann D, Lettau O, Sobirey M, et al. Doxorubicin cardiomyopathy-induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biol Chem. 2008;389(6):713–718.
  • Sainz IM, Pixley RA, Colman RW. Fifty years of research on the plasma kallikrein-kinin system: from protein structure and function to cell biology and in-vivo pathophysiology. Thromb Haemost. 2007;98(1):77–83.
  • Kontos MA, Maghee JH, Shapiro W. General and regional circulation effects of synthetic bradykinin in man. Circ Res. 1964;14:352.
  • McLean PG, Perretti M, Ahluwalia A. Inducible expression of the kinin B1 receptor in the endotoxemic heart: mechanisms of des-Arg9bradykinin-induced coronary vasodilation. Br J Pharmacol. 1999;128(2):275–282.
  • Robinson JA, Klondnycky ML, Loeb HS, et al. Endotoxin, prekallikrein, complement and systemic vascular resistance. Sequential measurements in man. Am J Med. 1975;59(1):61–67.
  • O’Donnnell TFJ, Clowes GHJ, Talamo RC. Colman RW: kinin activation in the blood of patients with sepsis. Surg Gynecol Obstet. 1976;143:539–545.
  • Aasen AO, Erichsen NS, Gallimore MJ, et al. Studies on components of the plasma kallikrein-kinin system in plasma samples from normal individuals and patients with septic shock. Adv Shock Res. 1980;4:1–10.
  • Martínez-Brotóns F, Oncins JR, Mestres J, et al. Plasma kallikrein-kinin system in patients with uncomplicated sepsis and septic shock–comparison with cardiogenic shock. Thromb Haemost. 1987;58(2):709–713.
  • Miyamoto M, Sudo T, Kawamura M, et al. Changes of the kallikrein-kinin system in acute phase of hemorrhagic and septic shock. Nihon Geka Hokan. 1989;58(6):475–484.
  • Bawolak MT, Touzin K, Moreau ME, et al. Cardiovascular expression of inflammatory signaling moleculaes, the kinin B1 receptor and COX2, in the rabbit: effects of LPS, anti-inflammatory and anti-hypertensive drugs. Regul Pept. 2008;146(1–3):157–168.
  • Schremmer-Danninger E, Offner A, Siebeck M, et al. B1 bradykinin receptors and carboxypeptidase M are both upregulated in the aorta of pigs after LPS infusion. Biochem Biophys Res Commun. 1998;243(1):246–252.
  • Marin-Castaño ME, Schanstra JP, Praddaude F, et al. Differential induction of functional B1-bradykinin receptors along the rat nephron in endotoxin induced inflammation. Kidney Int. 1998;54(6):1888–1898.
  • Seguin T, Buleon M, Destrube M, et al. Hemodynamic and renal involvement of B1 and B2 kinin receptors during the acute phase of endotoxin shock in mice. Int Immunopharmacol. 2008;8(2):217–221.
  • Bascands JL, Bachvarova M, Neau E, et al. Molecular determinants of LPS-induced acute renal inflammation: implication of the kinin B1 receptor. Biochem Biophys Res Commun. 2009;386(2):407–412.
  • Fischer LG, Hollmann MW, Horstman DJ, et al. Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs. Anesth Analg. 2000;90(3):625–631.
  • Viana AF, Maciel IS, Dornelles FN, et al. Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide. J Neuroinflammation. 2010;31(7):98.
  • Qadri F, Rimmele F, Mallis L, et al. Acute hypothalamo-pituitary-adrenal axis response to LPS-induced endotoxemia: expression pattern of kinin type B1 and B2 receptors. Biol Chem. 2016 1;397(2):97–109.
  • Pesquero JB, Araujo RC, Heppenstall PA, et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci U S A. 2000;97(14):8140–8145.
  • Merino VF, Todiras M, Campos LA, et al. Increased susceptibility to endotoxic shock in transgenic rats with endothelial overexpression of kinin B(1) receptors. J Mol Med (Berl). 2008;86(7):791–798.
  • Cayla C, Todiras M, Iliescu R, et al. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. Faseb J. 2007;21(8):1689–1698.
  • Tidjane N, Hachem A, Zaid Y, et al. A Primary role for kinin B1 receptor in inflammation, organ damage, and lethal thrombosis in a rat model of spetic shock in diabetes. Eur J Inflamm. 2015;13(1):40–52.
  • Murugesan P, Jung B, Lee D, et al. Kinin B1 receptor inhibition with BI113823 reduces inflammatory response, mitigates organ injury, and improves survival among rats with severe sepsis. J Infect Dis. 2016;213(4):532–540.
  • Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369(9572):1553–1564.
  • Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med. 2017;5(6):524–534.
  • Hillmeister P, Persson PB. The Kallikrein-Kinin system. Acta Physiol (Oxf). 2012;206(4):215–219.
  • Campanholle G, Landgraf RG, Borducchi E, et al. Bradykinin inducible receptor is essential to lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol. 2010;634(1–3):132–137.
  • Nasseri S, Gurusamy M, Jung B, et al. Kinin B1 receptor antagonist BI113823 reduces acute lung injury. Crit Care Med. 2015;43(11):e499–507.
  • Gurusamy M, Nasseri S, Lee H, et al. Kinin B1 receptor antagonist BI113823 reduces allergen-induced airway inflammation and mucus secretion in mice. Pharmacol Res. 2016;104:132–139.
  • Christiansen SC, Eddleston J, Woessner KM, et al. Up-regulation of functional kinin B1 receptors in allergic airway inflammation. J Immunol. 2002;169(4):2054–2060.
  • Huang TJ, Haddad EB, Fox AJ, et al. Contribution of bradykinin B(1) and B(2) receptors in allergen-induced bronchial hyperresponsiveness. Am J Respir Crit Care Med. 1999;160:1717–1723.
  • Eric J, Bkaily G, Bkaily GB, et al. Des-Arg9-bradykinin increases intracellular Ca2+ in bronchoalveolar eosinophils from ovalbumin-sensitized and -challenged mice. Eur J Pharmacol. 2003;475(1–3):129–137.
  • Pereira RL, Buscariollo BN, Corrêa-Costa M, et al. Bradykinin receptor 1 activation exacerbates experimental focal and segmental glomerulosclerosis. Kidney Int. 2011;79:1217–1227.
  • Kahn R, Mossberg M, Ståhl AL, et al. Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis. Kidney Int. 2017;91(1):96–105.
  • Tharaux PL, Dhaun N. Endothelium-Neutrophil Communication via B1-Kinin Receptor-Bearing Microvesicles in Vasculitis. J Am Soc Nephrol. 2017;28(8):2255–2258.
  • Dutra RC. Kinin receptors: key regulators of autoimmunity. Autoimmun Rev. 2017;16(2):192–207.
  • Balagué C, Kunkel SL, Godessart N. Understanding autoimmune disease: new targets for drug discovery. Drug Discov Today. 2009;14(19–20):926–934.
  • Ellis JS, Braley-Mullen H. Mechanisms by which B cells and regulatory T cells influence development of murine organ-specific autoimmune diseases. J Clin Med. 2017;6(2):pii: E13.
  • Germain L, Barabe J, Galeano C. Increased blood concentration of des-Arg9-bradykinin in experimental allergic encephalomyelitis. J Neurol Sci. 1988;83(2–3):211–217.
  • Schulze-Topphoff U, Prat A, et al. Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat Med. 2009;15(7):788–793.
  • Bachvarov DR, Landry M, Houle S, et al. Altered frequency of a promoter polymorphic allele of the kinin B1 receptor gene in inflammatory bowel disease. Gastroenterology. 1998;115(5):1045–1048.
  • Hara DB, Leite DF, Fernandes ES, et al. The relevance of kinin B1 receptor upregulation in a mouse model of colitis. Br J Pharmacol. 2008;154(6):1276–1286.
  • Marceau F, Regoli D. Therapeutic options in inflammatory bowel disease: experimentalevidence of a beneficial effect of kinin B1 receptor blockade. Br J Pharmacol. 2008;154(6):1163–1165.
  • Simard B, Gabra BH, Sirois P. Inhibitory effect of a novel bradykinin B1 receptor antagonist, R-954, on enhanced vascular permeability in type 1 diabetic mice. Can J Physiol Pharmacol. 2002;80(12):1203–1207.
  • Qadri F, Stark E, Häuser W, et al. Expression of kinin receptor mRNA in the HPA axis of type 1 and type 2 diabetic rats. Int Immunopharmacol. 2004;4(4):571–576.
  • Gabra BH, Berthiaume N, Sirois P, et al. The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidencein various experimental animal models of type 1 and type 2 diabetic neuropathy. Biol Chem. 2006;387(2):127–143.
  • Fukata M, Yokoi N, Fukata Y. Neurobiology of autoimmune encephalitis. Curr Opin Neurobiol. 2017;19(48):1–8.
  • Prat A, Weinrib L, Becher B, et al. Bradykinin B1 receptor expression and function on T lymphocytes in active multiple sclerosis. Neurology. 1999;53(9):2087–2092.
  • Göbel K, Pankratz S, Schneider-Hohendorf T, et al. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J Autoimmun. 2011;36(2):106–114.
  • Dutra RC, Leite DF, Bento AF, et al. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS One. 2011;6(11):e27875.
  • Dutra RC, Moreira EL, Alberti TB, et al. Spatial reference memory deficits precede motor dysfunction in an experimental autoimmune encephalomyelitis model: the role of kallikrein-kinin system. Brain Behav Immun. 2013;33:90–101.
  • Lin KS, Pan J, Amouroux G, et al. In vivo radioimaging of bradykinin receptor b1, a widely overexpressed molecule in human cancer. Cancer Res. 2015;75(2):387–393.
  • Stewart JM. Bradykinin antagonists as anti-cancer agents. Curr Pharm Des. 2003;9(25):2036–2042.
  • Mahabeer R, Bhoola KD. Kallikrein and kinin receptor genes. Pharmacol Ther. 2000;88(1):77–89.
  • Figueroa CD, Ehrenfeld P, Bhoola KD. Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets. 2012;16(3):299–312.
  • Nicoletti NF, Erig TC, Zanin RF, et al. Mechanisms involved in kinin-induced glioma cells proliferation: the role ofERK1/2 and PI3K/Akt pathways. J Neurooncol. 2014;120(2):235–244.
  • Da Costa PL, Sirois P, Tannock IF, et al. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett. 2014;345(1):27–38.
  • Dlamini Z, Bhoola KD. Upregulation of tissue kallikrein, kinin B1 receptor, and kinin B2 receptor in mast and giant cells infiltrating oesophageal squamous cell carcinoma. J Clin Pathol. 2005;58(9):915–922.
  • Toledo C, Matus CE, Barraza X, et al. Expression of HER2 and bradykinin B1 receptors in precursor lesions of gallbladder carcinoma. World J Gastroenterol. 2012;18(11):1208–1215.
  • Zelawski W, Machnik G, Nowaczyk G, et al. Expression and localisation of kinin receptors in colorectal polyps. Int Immunopharmacol. 2006;6(6):997–1002.
  • Wang DC, Plante K, Stewart T, et al. Comparison of survival for partial vs. radical nephrectomy in young patients with T1a renal cell carcinoma treated at commission on cancer-accredited facilities and influence of comorbidities on treatment choice. Urol Oncol. 2017;20:pii: S1078-1439(17)30340-X.
  • Orchel J, Witek L, Kimsa M, et al. Expression patterns of kinin-dependent genes in endometrial cancer. Int J Gynecol Cancer. 2012;22(6):937–944.
  • Naidu N, Botha JH, Naidoo S. B1 but not B2 bradykinin receptor agonists promote DU145 prostate cancer cell proliferation and migration. Afr Health Sci. 2014;14(3):657–662.
  • Barki-Harrington L, Bookout AL, Wang G, et al. Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J. 2003;371(Pt 2):581–587.
  • Taub JS, Guo R, Leeb-Lundberg LM, et al. Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res. 2003;63(9):2037–2041.
  • Molina L, Matus CE, Astroza A, et al. Stimulation of the bradykinin B(1) receptor induces the proliferation of estrogen-sensitive breast cancer cells and activates the ERK1/2 signaling pathway. Breast Cancer Res Treat. 2009;118(3):499–510.
  • Ehrenfeld P, Conejeros I, Pavicic MF, et al. Activation of kinin B1 receptor increases the release of metalloproteases-2 and −9 from both estrogen-sensitive and -insensitive breast cancer cells. Cancer Lett. 2011;301(1):106–118.
  • Noda M, Kariura Y, Amano T, et al. Expression and function of bradykinin receptors in microglia. Life Sci. 2003;72(14):1573–1581.
  • Ifuku M, Färber K, Okuno Y, et al. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci. 2007;27(48):13065–13073.
  • Austinat M, Braeuninger S, Pesquero JB, et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40(1):285–293.
  • Raslan F, Schwarz T, Meuth SG, et al. Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation. J Cereb Blood Flow Metab. 2010;30(8):1477–1486.
  • Bregola G, Varani K, Gessi S, et al. Changes in hippocampal and cortical B1 bradykinin receptor biological activity in two experimental models of epilepsy. Neuroscience. 1999;92(3):1043–1049.
  • Yasuyoshi H, Kashii S, Zhang S, et al. Protective effect of bradykinin against glutamate neurotoxicity in cultured rat retinal neurons. Invest Ophthalmol Vis Sci. 2000;41(8):2273–2278.
  • Mazzuferi M, Binaschi A, Rodi D, et al. Induction of B1 bradykinin receptors in the kindled hippocampus increases extracellular glutamate levels: a microdialysis study. Neuroscience. 2005;135(3):979–986.
  • Argañaraz GA, Silva JA Jr, Perosa SR, et al. The synthesis and distribution of the kinin B1 and B2 receptors are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Brain Res. 2004;1006(1):114–125.
  • Rodi D, Buzzi A, Barbieri M, et al. Bradykinin B₂ receptors increase hippocampal excitability and susceptibility to seizures in mice. Neuroscience. 2013;248:392–402.
  • Duka A, Kintsurashvili E, Duka I, et al. Angiotensin-converting enzyme inhibition after experimental myocardial infarct: role of the kinin B1 and B2 receptors. Hypertension. 2008;51(5):1352–1357.
  • Hagiwara M, Murakami H, Ura N, et al. Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2004;27:399–408.
  • Agata J, Miao RQ, Yayama K, et al. Bradykinin B1 receptor mediates inhibition of neointima formation in rat artery after balloon angioplasty. Hypertension. 2000;36:364–370.
  • Xu J, Carretero OA, Sun Y, et al. Role of kinin receptor in the regulation of cardiac function and remodeling after myocardial infarction. Hypertension. 2005;45(2):747–753.
  • Desposito D, Potier L, Chollet C, et al. Kinin receptor agonism restores hindlimb postischemic neovascularization capacity in diabetic mice. J Pharmacol Exp Ther. 2015;352(2):218–226.
  • Desposito D, Zadigue G, Taveau C, et al. effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mine. Sci Rep. 2017;7(1):9410.
  • Regoli D, Drapeau G, Rovero P, et al. The actions of kinin antagonists on B1 and B2 receptor systems. Eur J Pharmacol. 1986;123(1):61–65.
  • De Ligt RA, Kourounakis AP, IJzerman AP. Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol. 2000;130(1):1–12.
  • Huey R, Bloor CM, Kawahara MS, et al. Potentiation of the anaphylatoxins in vivo using an inhibitor of serum carboxypeptidase N (SCPN). I. Lethalilty and pathologic effects on pulmonary tissue. Am J Pathol. 1983;112(1):48–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.