891
Views
3
CrossRef citations to date
0
Altmetric
Review

Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis

ORCID Icon, , , , & ORCID Icon
Pages 1049-1061 | Received 16 Mar 2018, Accepted 24 Oct 2018, Published online: 16 Nov 2018

References

  • Selman M, Pardo A. Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res. 2002;3(1):3.
  • Cool CD, Groshong SD, Rai PR, et al. Fibroblast foci are not discrete sites of lung injury or repair: the fibroblast reticulum. Am J Respir Crit Care Med. 2006;174(6):654–658.
  • Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor β1-induced pulmonary fibrosis. J Exp Med. 2004;200(3):377–389.
  • Fattman CL. Apoptosis in pulmonary fibrosis: too much or not enough? Antioxid Redox Signal. 2008;10(2):379–386.
  • Daniil ZD, Papageorgiou E, Koutsokera A, et al. Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2008;21(1):26–31.
  • Araya J, Kojima J, Takasaka N, et al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol: Lung Cell Mol Physiol. 2013;304(1):L56–L69.
  • Im J, Hergert P, Nho RS. Reduced FoxO3a expression causes low autophagy in idiopathic pulmonary fibrosis fibroblasts on collagen matrices. Am J Physiol: Lung Cell Mol Physiol. 2015;309(6):L552–L561.
  • Patel AS, Lin L, Geyer A, et al. Autophagy in idiopathic pulmonary fibrosis. PLoS ONE. 2012;7(7):e41394.
  • Romero Y, Bueno M, Ramirez R, et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell. 2016;15(6):1103–1112.
  • Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 2018;193:20-33.
  • Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003;167(12):1600–1619.
  • Crapo J. Oxidative stress as an initiator of cytokine release and cell damage. Eur Respiratory Soc. 2003;22:4s-6s.
  • Griffith B, Pendyala S, Hecker L, et al. NOX enzymes and pulmonary disease. Antioxid Redox Signal. 2009;11(10):2505–2516.
  • Kinnula VL, Fattman CL, Tan RJ, et al. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med. 2005;172(4):417–422.
  • Bocchino M, Agnese S, Fagone E, et al. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS ONE. 2010;5(11):e14003.
  • Bergeron A, Soler P, Kambouchner M, et al. Cytokine profiles in idiopathic pulmonary fibrosis suggest an important role for TGF‐β and IL-10. Eur Respir J. 2003;22(1):69–76.
  • Waghray M, Cui Z, Horowitz JC, et al. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J. 2005;19(7):854–856.
  • Amara N, Goven D, Prost F, et al. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFβ1-induced fibroblast differentiation into myofibroblasts. Thorax. 2010;65(8):733–738.
  • Carnesecchi S, Deffert C, Donati Y, et al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal. 2011;15(3):607–619.
  • Tsubouchi K, Araya J, Minagawa S, et al. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy. 2017;13(8):1420–1434.
  • Dostert C, Pétrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–677.
  • Jiang F, Liu G-S, Dusting GJ, et al. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses. Redox Biol. 2014;2:267–272.
  • Bodamyali T, Stevens CR, Blake DR, et al. Reactive oxygen/nitrogen species and acute inflammation: a physiological process. Free Radic Inflam. 2000;11–16.
  • Saleh D, Barnes PJ, Giaid A. Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155(5):1763–1769.
  • Ricciardolo FL, Di Stefano A, Sabatini F, et al. Reactive nitrogen species in the respiratory tract. Eur J Pharmacol. 2006;533(1):240–252.
  • Hsu Y-C, Wang L-F, Chien YW. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radic Biol Med. 2007;42(5):599–607.
  • Zeidler PC, Hubbs A, Battelli L, et al. Role of inducible nitric oxide synthase-derived nitric oxide in silica-induced pulmonary inflammation and fibrosis. J Toxicol Environ Health. 2004;67(13):1001–1026.
  • Walters DM, Cho H-Y, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal. 2008;10(2):321–332.
  • Mossman BT, Marsh JP, Sesko A, et al. Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis. Am Rev Respir Dis. 1990;141(5 Pt 1):1266–1271.
  • Murthy S, Adamcakova-Dodd A, Perry SS, et al. Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis. Am J Physiol: Lung Cell Mol Physiol. 2009;297(5):L846–L855.
  • Lakari E, PäÄKkö P, Pietarinen-Runtti P, et al. Manganese superoxide dismutase and catalase are coordinately expressed in the alveolar region in chronic interstitial pneumonias and granulomatous diseases of the lung. Am J Respir Crit Care Med. 2000;161(2):615–621.
  • Lakari E, Paakko P, Kinnula VL. Manganese superoxide dismutase, but not CuZn superoxide dismutase, is highly expressed in the granulomas of pulmonary sarcoidosis and extrinsic allergic alveolitis. Am J Respir Crit Care Med. 1998;158(2):589–596.
  • Bowler RP, Nicks M, Warnick K, et al. Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am J Physiol: Lung Cell Mol Physiol. 2002;282(4):L719–L726.
  • Rabbani ZN, Anscher MS, Folz RJ, et al. Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity. BMC Cancer. 2005;5(1):59.
  • Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058–6066.
  • Gao F, Kinnula VL, Myllärniemi M, et al. Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid Redox Signal. 2008;10(2):343–354.
  • Tan RJ, Fattman CL, Watkins SC, et al. Redistribution of pulmonary EC-SOD after exposure to asbestos. J Appl Physiol. 2004;97(5):2006–2013.
  • Petersen SV, Oury TD, Ostergaard L, et al. Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem. 2004;279(14):13705–13710.
  • Kinnula V, Hodgson U, Lakari E, et al. Extracellular superoxide dismutase has a highly specific localization in idiopathic pulmonary fibrosis/usual interstitial pneumonia. Histopathology. 2006;49(1):66–74.
  • Parizada B, Werber M, Nimrod A. Protective effects of human recombinant MnSOD in adjuvant arthritis and bleomycin-induced lung fibrosis. Free Radic Res Commun. 1991;15(5):297–301.
  • He C, Murthy S, McCormick ML, et al. Mitochondrial Cu,Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation. J Biol Chem. 2011 Apr 29;286(17):15597–15607. PubMed PMID: 21393238; PubMed Central PMCID: PMCPMC3083152; eng.
  • He C, Murthy S, McCormick ML, et al. Mitochondrial Cu,Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation. J Biol Chem. 2011;286(17):15597–15607.
  • He C, Ryan AJ, Murthy S, et al. Accelerated development of pulmonary fibrosis via Cu,Zn-sod-induced alternative activation of macrophages. J Biol Chem. 2013;288(28):20745-20757.
  • Vehviläinen P, Koistinaho J, Gundars G. Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front Cell Neurosci. 2014;8:126.
  • Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1):222–239.
  • Behr J, Degenkolb B, Krombach F, et al. Intracellular glutathione and bronchoalveolar cells in fibrosing alveolitis: effects of N-acetylcysteine. Eur Respir J. 2002;19(5):906–911.
  • Tiitto LH, Peltoniemi MJ, Kaarteenaho-Wiik RL, et al. Cell-specific regulation of gamma-glutamylcysteine synthetase in human interstitial lung diseases. Hum Pathol. 2004;35(7):832–839.
  • Behr J, Maier K, Degenkolb B, et al. Antioxidative and clinical effects of high-dose N-acetylcysteine in fibrosing alveolitis: adjunctive therapy to maintenance immunosuppression. Am J Respir Crit Care Med. 1997;156(6):1897–1901.
  • Hybertson BM, Gao B, Bose SK, et al. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011;32(4):234–246.
  • Cho H-Y, Reddy SP, DeBiase A, et al. Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med. 2005;38(3):325–343.
  • Cho H-Y, Reddy SP, Yamamoto M, et al. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J. 2004;18(11):1258–1260.
  • Artaud-Macari E, Goven D, Brayer S, et al. Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid Redox Signal. 2013;18(1):66–79.
  • Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol. 2017;175(16):3230-3238.
  • Majidinia M, Sadeghpour A, Mehrzadi S, et al. Melatonin: a pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res. 2017;63(1):e12416.
  • Reiter RJ, Tan D-X, Manchester L, et al. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci (De Gruyter Open). 2007;52:11-28.
  • Olegário JGP, Silva MV, Machado JR, et al. Pulmonary innate immune response and melatonin receptors in the perinatal stress. Clin Dev Immunol. 2013;2013:340959.
  • Swiderska-Kołacz G, Klusek J, Kołataj A. The effect of melatonin on glutathione and glutathione transferase and glutathione peroxidase activities in the mouse liver and kidney in vivo. Neuro Endocrinol Lett. 2006;27(3):365–368.
  • Goc Z, Szaroma W, Kapusta E, et al. Protective effects of melatonin on the activity of SOD, CAT, GSH-Px and GSH content in organs of mice after administration of SNP. Chin J Physiol. 2017;60(1):1–10.
  • Naseem M, Parvez S. Role of melatonin in traumatic brain injury and spinal cord injury. Sci World J. 2014;2014:1–13.
  • Santofimia-Castaño P, Ruy DC, Garcia-Sanchez L, et al. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med. 2015;87:226–236.
  • Winiarska K, Dzik JM, Labudda M, et al. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J Pineal Res. 2016;60(1):109–117.
  • Zhou J, Zhang S, Zhao X, et al. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid‐β1–42. J Pineal Res. 2008;45(2):157–165.
  • Chen Y-C, Sheen J-M, Tain Y-L, et al. Alterations in NADPH oxidase expression and blood–brain barrier in bile duct ligation-treated young rats: effects of melatonin. Neurochem Int. 2012;60(8):751–758.
  • Nakao T, Morita H, Maemura K, et al. Melatonin ameliorates angiotensin II‐induced vascular endothelial damage via its antioxidative properties. J Pineal Res. 2013;55(3):287–293.
  • Hung MW, Kravtsov GM, Lau CF, et al. Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J Pineal Res. 2013;55(3):247–256.
  • Yeung HM, Hung MW, Lau CF, et al. Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. J Pineal Res. 2015;58(1):12–25.
  • Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–278.
  • Mayo JC, Sainz RM, Tan D-X, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165(1):139–149.
  • Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 2016;61(4):411–425.
  • Topal T, Oter S, Korkmaz A, et al. Exogenously administered and endogenously produced melatonin reduce hyperbaric oxygen-induced oxidative stress in rat lung. Life Sci. 2004;75(4):461–467.
  • El-Sokkary GH, Cuzzocrea S, Reiter RJ. Effect of chronic nicotine administration on the rat lung and liver: beneficial role of melatonin. Toxicology. 2007;239(1):60–67.
  • Chen CF, Wang D, Reiter RJ, et al. Oral melatonin attenuates lung inflammation and airway hyperreactivity induced by inhalation of aerosolized pancreatic fluid in rats. J Pineal Res. 2011;50(1):46–53.
  • Taslidere E, Esrefoglu M, Elbe H, et al. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Exp Lung Res. 2014 Mar;40(2):59–65. PubMed PMID: 24447267; eng.
  • Jang SS, Kim HG, Lee JS, et al. Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol. 2013 Feb;89(2):97–105. PubMed PMID: WOS:000314446700004.
  • Okutan H, Savas C, Delibas N. The antioxidant effect of melatonin in lung injury after aortic occlusion–reperfusion. Interact Cardiovasc Thorac Surg. 2004;3(3):519–522.
  • Unlu M, Fidan F, Sezer M, et al. Effects of melatonin on the oxidant/antioxidant status and lung histopathology in rabbits exposed to cigarette smoke. Respirology. 2006;11(4):422–428.
  • Kim GD, Lee SE, Kim TH, et al. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts. J Pineal Res. 2012 Apr;52(3):356–364. PubMed PMID: 21951103; eng.
  • Huang SH, Cao XJ, Liu W, et al. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J Pineal Res. 2010;48(2):109–116.
  • Ucar M, Korkmaz A, Reiter RJ, et al. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett. 2007;173(2):124–131.
  • Charão MF, Baierle M, Gauer B, et al. Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line. Mutat Res Genet Toxicol Environ Mutagen. 2015;784:1–9.
  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741.
  • Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work? Annu Rev Biochem. 2016 Jun 02;85:685–713. PubMed PMID: 26865532; eng.
  • Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012 Jan;32(1):2–11. PubMed PMID: 22025673; PubMed Central PMCID: PMCPMC3255710; eng.
  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010 May;221(1):3–12. PubMed PMID: 20225336; PubMed Central PMCID: PMCPMC2990190; eng.
  • Noda NN, Inagaki F. Mechanisms of autophagy. Annu Rev Biophys. 2015;44:101–122. PubMed PMID: 25747593; eng.
  • Chan EY, Longatti A, McKnight NC, et al. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29(1):157–171.
  • Vander Haar E, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007 Mar;9(3):316–323. PubMed PMID: 17277771; eng.
  • Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol. 2008 Apr;20(2):126–136. PubMed PMID: 18394876; PubMed Central PMCID: PMCPMC2387118; eng.
  • Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007 Dec;6(6):458–471. PubMed PMID: 18054315; eng.
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93. PubMed PMID: 19653858; PubMed Central PMCID: PMCPMC2831538; eng.
  • Jawhari S, Ratinaud MH, Verdier M. Glioblastoma, hypoxia and autophagy: a survival-prone ‘menage-a-trois’. Cell Death Dis. 2016 Oct 27;7(10):e2434. PubMed PMID: 27787518; PubMed Central PMCID: PMCPMC5133985; eng.
  • Mehrpour M, Esclatine A, Beau I, et al. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010 Jul;20(7):748–762. PubMed PMID: 20548331; eng.
  • Wei Y, Sinha SC, Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 2008;4(7):949–951.
  • Pyo J-O, Jang M-H, Kwon Y-K, et al. Essential roles of Atg5 and FADD in autophagic cell death dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem. 2005;280(21):20722–20729.
  • Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8(10):1124.
  • Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014 Jun;16(6):495–501. PubMed PMID: 24875736; eng.
  • Kobayashi K, Araya J, Minagawa S, et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J Immunol. 2016;197(2):504–516.
  • Liu L, Sakakibara K, Chen Q, et al. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014 Jul;24(7):787–795. PubMed PMID: 24903109; PubMed Central PMCID: PMCPMC4085769; eng.
  • Higgins G, Coughlan M. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171(8):1917–1942.
  • Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010 Mar 19;140(6):900–917. PubMed PMID: 20303879; PubMed Central PMCID: PMCPMC2887297; eng.
  • Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017 Jan 09. PubMed PMID: 28067409; eng. DOI:10.1002/jcp.25785
  • B’Chir W, Maurin AC, Carraro V, et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013 Sep;41(16):7683–7699. PubMed PMID: 23804767; PubMed Central PMCID: PMCPMC3763548; eng.
  • Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007 Feb;14(2):230–239. PubMed PMID: 16794605; eng.
  • Margariti A, Li H, Chen T, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 2013 Jan 11;288(2):859–872. PubMed PMID: 23184933; PubMed Central PMCID: PMCPMC3543035; eng.
  • Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005 Sep 23;122(6):927–939. PubMed PMID: 16179260; eng.
  • Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol. 1999 Dec;19(12):8469–8478. PubMed PMID: 10567572; PubMed Central PMCID: PMCPMC84954; eng.
  • Hoyer-Hansen M, Bastholm L, Szyniarowski P, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 2007 Jan 26;25(2):193–205. PubMed PMID: 17244528; eng.
  • Zalckvar E, Berissi H, Eisenstein M, et al. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy. 2009 Jul;5(5):720–722. PubMed PMID: 19395874; eng.
  • Sakaki K, Kaufman RJ. Regulation of ER stress-induced macroautophagy by protein kinase C. Autophagy. 2008 Aug;4(6):841–843. PubMed PMID: 18670192; PubMed Central PMCID: PMCPMC2770887; eng.
  • Sridharan S, Jain K, Basu A. Regulation of autophagy by kinases. Cancers. 2011 Jun;3(2):2630–2654. PubMed PMID: 24212825; PubMed Central PMCID: PMCPMC3757434; eng.
  • Jing G, Wang JJ, Zhang SX. ER stress and apoptosis: a new mechanism for retinal cell death. Exp Diabetes Res. 2012;2012:589589. PubMed PMID: 22216020; PubMed Central PMCID: PMCPMC3246718; eng.
  • Ron D, Hubbard SR. How IRE1 reacts to ER stress. Cell. 2008;132(1):24–26.
  • Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program mechanism of caspase activation. J Biol Chem. 2001;276(36):33869–33874.
  • Liao Y, Fung TS, Huang M, et al. Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J Virol. 2013;87(14):8124–8134.
  • Mi S, Li Z, Yang H-Z, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–3014.
  • Gui Y-S, Wang L, Tian X, et al. mTOR overactivation and compromised autophagy in the pathogenesis of pulmonary fibrosis. PLoS ONE. 2015;10(9):e0138625.
  • Bueno M, Lai Y-C, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125(2):521.
  • Patel AS, Song JW, Chu SG, et al. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PLoS ONE. 2015;10(3):e0121246.
  • Li H-P, Li X, He G-J, et al. The influence of dexamethasone on the proliferation and apoptosis of pulmonary inflammatory cells in bleomycin‐induced pulmonary fibrosis in rats. Respirology. 2004;9(1):25–32.
  • Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol. 1997;17(3):272–278.
  • Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;178(8):838–846.
  • Hagimoto N, Kuwano K, Inoshima I, et al. TGF-β1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol. 2002;168(12):6470–6478.
  • Kuwano K, Hagimoto N, Tanaka T, et al. Expression of apoptosis‐regulatory genes in epithelial cells in pulmonary fibrosis in mice. J Pathol. 2000;190(2):221–229.
  • Drakopanagiotakis F, Xifteri A, Polychronopoulos V, et al. Apoptosis in lung injury and fibrosis. Eur Respir J. 2008;32(6):1631–1638.
  • Kuwano K, Nakashima N, Inoshima I, et al. Oxidative stress in lung epithelial cells from patients with idiopathic interstitial pneumonias. Eur Respir J. 2003;21(2):232–240.
  • Hagimoto N, Kuwano K, Nomoto Y, et al. Apoptosis and expression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol. 1997;16(1):91–101.
  • Yoshida K, Kuwano K, Hagimoto N, et al. MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J Pathol. 2002;198(3):388–396.
  • Miyazono K. Positive and negative regulation of TGF-beta signaling. J Cell Sci. 2000;113(7):1101–1109.
  • Matsuoka H, Arai T, Mori M, et al. A p38 MAPK inhibitor, FR-167653, ameliorates murine bleomycin-induced pulmonary fibrosis. Am J Physiol: Lung Cell Mol Physiol. 2002;283(1):L103–L112.
  • Cazanave SC, Mott JL, Elmi NA, et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem. 2009;284(39):26591–26602.
  • Li X, Zhang H, Soledad-Conrad V, et al. Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am J Physiol: Lung Cell Mol Physiol. 2003;284(3):L501–L507.
  • Bargout R, Jankov A, Dincer E, et al. Amiodarone induces apoptosis of human and rat alveolar epithelial cells in vitro. Am J Physiol: Lung Cell Mol Physiol. 2000;278(5):L1039–L1044.
  • Uhal BD, Wang R, Laukka J, et al. Inhibition of amiodarone‐induced lung fibrosis but not alveolitis by angiotensin system antagonists. Basic Clin Pharmacol Toxicol. 2003;92(2):81–87.
  • Lin C, Chao H, Li Z, et al. Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res. 2016 Sep;61(2):177–186. PubMed PMID: 27117839; eng.
  • Cao S, Shrestha S, Li J, et al. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep. 2017;7(1):2417.
  • Chen J, Wang L, Wu C, et al. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res. 2014 Jan;56(1):12–19. PubMed PMID: 24033352; eng.
  • Areti A, Komirishetty P, Akuthota M, et al. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J Pineal Res. 2017 Jan 24;62:e12393. PubMed PMID: 28118492; eng.
  • Choi SI, Kim KS, Oh JY, et al. Melatonin induces autophagy via an mTOR-dependent pathway and enhances clearance of mutant-TGFBIp. J Pineal Res. 2013 May;54(4):361–372. PubMed PMID: 23363291; eng.
  • Hong Y, Won J, Lee Y, et al. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J Pineal Res. 2014 Apr;56(3):264–274. PubMed PMID: 24484372; eng.
  • Ordonez R, Fernandez A, Prieto-Dominguez N, et al. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J Pineal Res. 2015 Sep;59(2):178–189. PubMed PMID: 25975536; PubMed Central PMCID: PMCPMC4523438; eng.
  • Singh SS, Vats S, Chia AY-Q, et al. Dual role of autophagy in hallmarks of cancer. Oncogene. 2018;37(9):1142-1158.
  • Zaouali MA, Boncompagni E, Reiter RJ, et al. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res. 2013 Aug;55(1):65–78. PubMed PMID: 23551302; eng.
  • Rui BB, Chen H, Jang L, et al. Melatonin upregulates the activity of AMPK and attenuates lipid accumulation in alcohol-induced rats. Alcohol Alcohol. 2016 Jan;51(1):11–19. PubMed PMID: 26564773; eng.
  • Molpeceres V, Mauriz JL, García-Mediavilla MV, et al. Melatonin is able to reduce the apoptotic liver changes induced by aging via inhibition of the intrinsic pathway of apoptosis. J Gerontol Ser A: Biol Sci Med Sci. 2007;62(7):687–695.
  • Baydas G, Reiter R, Akbulut M, et al. Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro-and anti-apoptotic protein levels. Neuroscience. 2005;135(3):879–886.
  • Baydas G, Koz ST, Tuzcu M, et al. Melatonin inhibits oxidative stress and apoptosis in fetal brains of hyperhomocysteinemic rat dams. J Pineal Res. 2007;43(3):225–231.
  • Amin AH, El-Missiry MA, Othman AI. Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur J Pharmacol. 2015;747:166–173.
  • Tuñón MJ, Miguel BS, Crespo I, et al. Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J Pineal Res. 2011;50(1):38–45.
  • Radogna F, Cristofanon S, Paternoster L, et al. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl‐2. J Pineal Res. 2008;44(3):316–325.
  • Espino J, Ortiz Á, Bejarano I, et al. Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil Steril. 2011;95(7):2290–2296.
  • Das A, McDowell M, Pava MJ, et al. The inhibition of apoptosis by melatonin in VSC4. 1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF‐α toxicity involves membrane melatonin receptors. J Pineal Res. 2010;48(2):157–169.
  • Coto-Montes A, Boga JA, Rosales-Corral S, et al. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol. 2012 Sep 25;361(1–2):12–23. PubMed PMID: 22575351; eng.
  • Lin AM, Fang S, Chao P, et al. Melatonin attenuates arsenite‐induced apoptosis in rat brain: involvement of mitochondrial and endoplasmic reticulum pathways and aggregation of α‐synuclein. J Pineal Res. 2007;43(2):163–171.
  • Ji YL, Wang H, Meng C, et al. Melatonin alleviates cadmium‐induced cellular stress and germ cell apoptosis in testes. J Pineal Res. 2012;52(1):71–79.
  • Sharma S, Sarkar J, Haldar C, et al. Melatonin reverses fas, E2F-1 and endoplasmic reticulum stress mediated apoptosis and dysregulation of autophagy induced by the herbicide atrazine in murine splenocytes. PLoS ONE. 2014;9(9):e108602.
  • Wang H, Li L, Zhao M, et al. Melatonin alleviates lipopolysaccharide‐induced placental cellular stress response in mice. J Pineal Res. 2011;50(4):418–426.
  • Zhao H, Wu -Q-Q, Cao L-F, et al. Melatonin inhibits endoplasmic reticulum stress and epithelial-mesenchymal transition during bleomycin-induced pulmonary fibrosis in mice. PLoS ONE. 2014;9(5):e97266.
  • Su H, Li J, Chen T, et al. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. Mol Cell Biochem. 2016;422(1–2):85–95.
  • Ji ZZ, Xu YC. Melatonin protects podocytes from angiotensin II-induced injury in an in vitro diabetic nephropathy model. Mol Med Rep. 2016;14(1):920–926.
  • Kong J, Zhang Y, Liu S, et al. Melatonin attenuates angiotensin II-induced abdominal aortic aneurysm through the down-regulation of matrix metalloproteinases. Oncotarget. 2017;8(9):14283.
  • Ishigaki S, Ohashi N, Matsuyama T, et al. Melatonin ameliorates intrarenal renin–angiotensin system in a 5/6 nephrectomy rat model. Clin Exp Nephrol. 2018;22(3):539-549.
  • Yip HK, Chang YC, Wallace CG, et al. Melatonin treatment improves adipose‐derived mesenchymal stem cell therapy for acute lung ischemia–reperfusion injury. J Pineal Res. 2013;54(2):207–221.
  • Andrabi SA, Sayeed I, Siemen D, et al. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 2004;18(7):869–871.
  • Feixiao Xue CS, Chen Q, Hang W, et al. Melatonin mediates protective effects against kainic acid-induced neuronal death through safeguarding ER stress and mitochondrial disturbance. Front Mol Neurosci. 2017;10:49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.