483
Views
7
CrossRef citations to date
0
Altmetric
Review

Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets.

, , , , &
Pages 711-724 | Received 24 Sep 2018, Accepted 04 Jun 2019, Published online: 09 Jun 2019

References

  • Riordan JR, Rommens JM, Kerem B-S, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–1073.
  • Stephenson AL, Sykes J, Stanojevic S, et al. Survival comparison of patients with cystic fibrosis in Canada and the United States: a population-based cohort study. Ann Intern Med. 2017 Apr 18;166(8):537–546. PubMed PMID: 28288488; PubMed Central PMCID: PMCPMC5467971.
  • Pettit RS. Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment [Review]. Ann Pharmacother. 2012 Jul-Aug;46(7–8):1065–1075. PubMed PMID: 22739718.
  • Anonymous. Canadian cystic fibrosis registry. Toronto; 2013.
  • Kim SJ, Skach WR. Mechanisms of CFTR folding at the endoplasmic reticulum. Front Pharmacol. 2012;3:201. PubMed PMID: 23248597; PubMed Central PMCID: PMC3521238.
  • Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Cold Spring Harb Perspect Biol. 2013 May 01;5(5):a013201. PubMed PMID: 23637286; PubMed Central PMCID: PMC3632058.
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis [Review]. Nature. 2011 Jul 20;475(7356):324–332. PubMed PMID: 21776078.
  • Anelli T, Sitia R. Protein quality control in the early secretory pathway [Research Support, Non-U.S. Gov’t Review]. Embo J. 2008 Jan 23;27(2):315–327. PubMed PMID: 18216874; PubMed Central PMCID: PMC2234347.
  • Jensen TJ, Loo MA, Pind S, et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell. 1995;83:129–135.
  • Ward C, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 1995;83:121–127.
  • Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol. 2014 Jul;52:26–38. PubMed PMID: 24685677.
  • Farinha CM, Matos P, Amaral MD. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. Febs J. 2013 Sep;280(18):4396–4406. PubMed PMID: 23773658.
  • Hudock KM, Clancy JP. An update on new and emerging therapies for cystic fibrosis. Expert Opin Emerg Drugs. 2017 Dec;22(4):331–346. PubMed PMID: 29264936.
  • Maiuri L, Raia V, Kroemer G. Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ. 2017 Nov;24(11):1825–1844. PubMed PMID: 28937684; PubMed Central PMCID: PMCPMC5635223.
  • Ratjen F, Bell SC, Rowe SM, et al. Cystic fibrosis. Nat Rev Dis Primers. 2015 May;14(1):15010. PubMed PMID: 27189798.
  • Burney TJ, Davies JC. Gene therapy for the treatment of cystic fibrosis. Appl Clin Genet. 2012;5:29–36. PubMed PMID: 23776378; PubMed Central PMCID: PMCPMC3681190.
  • Crystal RG, McElvaney NG, Rosenfeld MA, et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994 Sep;8(1):42–51. PubMed PMID: 7527271.
  • Guggino WB, Cebotaru L. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther. 2017 Oct;17(10):1265–1273. PubMed PMID: 28657358; PubMed Central PMCID: PMCPMC5858933.
  • Cooney AL, McCray PB Jr., Sinn PL. Cystic fibrosis gene therapy: looking back, looking forward. Genes (Basel). 2018 Nov 7;9(11):538. PubMed PMID: 30405068; PubMed Central PMCID: PMCPMC6266271.
  • Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990;63:827–834.
  • Denning GM, Anderson MP, Amara JF, et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992;358:761–764.
  • Dalemans W, Barbry P, Champigny G, et al. Altered chloride ion channel kinetics associated with the ∆F508 cystic fibrosis mutation. Nature. 1991;354:526–528.
  • Lukacs GL, Chang X-B, Bear C, et al. The ∆F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. JBiolChem. 1993;1993(268):21592–21598.
  • Kopito RR, Ron D. Conformational disease [Congresses]. Nat Cell Biol. 2000 Nov;2(11):E207–9. PubMed PMID: 11056553.
  • Lopes-Pacheco M. CFTR modulators: shedding light on precision medicine for cystic fibrosis. Front Pharmacol. 2016;7:275. PubMed PMID: 27656143; PubMed Central PMCID: PMCPMC5011145.
  • Lukacs GL, Verkman AS. CFTR: folding, misfolding and correcting the DeltaF508 conformational defect. Trends Mol Med. 2012 Feb;18(2):81–91. PubMed PMID: 22138491; PubMed Central PMCID: PMCPMC3643519.
  • Rowe SM, Verkman AS. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Perspect Med. 2013 Jul 1;3(7). DOI:10.1101/cshperspect.a009761. PubMed PMID: 23818513; PubMed Central PMCID: PMCPMC3685879.
  • Kim Chiaw P, Eckford PD, Bear CE. Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy. Essays Biochem. 2011 Sep 7;50(1):233–248. PubMed PMID: 21967060.
  • Ong T, Ramsey BW. New therapeutic approaches to modulate and correct cystic fibrosis transmembrane conductance regulator. Pediatr Clin North Am. 2016 Aug;63(4):751–764. PubMed PMID: 27469186; PubMed Central PMCID: PMCPMC5478192.
  • Barry PJ, Jones AM. New and emerging treatments for cystic fibrosis. Drugs. 2015 Jul;75(11):1165–1175. PubMed PMID: 26091951.
  • Hanrahan JW, Sampson HM, Thomas DY. Novel pharmacological strategies to treat cystic fibrosis. Trends Pharmacol Sci. 2013 Feb;34(2):119–125. PubMed PMID: 23380248.
  • Hanrahan JW, Matthes E, Carlile G, et al. Corrector combination therapies for F508del-CFTR. Curr Opin Pharmacol. 2017 Jun;34:105–111. PubMed PMID: 29080476.
  • Clancy JP. Rapid therapeutic advances in CFTR modulator science. Pediatr Pulmonol. 2018 Nov;53(S3):S4–S11. PubMed PMID: 30289627.
  • Burgener EB, Moss RB. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Curr Opin Pediatr. 2018 Jun;30(3):372–377. PubMed PMID: 29538046.
  • Li H, Pesce E, Sheppard DN, et al. Therapeutic approaches to CFTR dysfunction: from discovery to drug development. J Cystic Fibrosis. 2018 Mar;17(2S):S14–S21. PubMed PMID: 28916430.
  • Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol. 2001;281:C1734–C1742.
  • Maitra R, Sivashanmugam P, Warner K. A rapid membrane potential assay to monitor CFTR function and inhibition. J Biomol Screen. 2013 Oct;18(9):1132–1137. PubMed PMID: WOS:000324760300018; English.
  • Mutyam V, Du M, Xue X, et al. Discovery of clinically approved agents that promote suppression of cystic fibrosis transmembrane conductance regulator nonsense mutations. Am J Respir Crit Care Med. 2016 Nov 1;194(9):1092–1103. PubMed PMID: 27104944; PubMed Central PMCID: PMCPMC5114449.
  • Howard M, DuVall MD, Devor DC, et al. Epitope tagging permits cell surface detection of functional CFTR. Am J Physiol Cell Physiol. 1995;269:C1565–C1576.
  • Veit G, Avramescu RG, Perdomo D, et al. Some gating potentiators, including VX-770, diminish DeltaF508-CFTR functional expression. Sci Transl Med. 2014 Jul 23;6(246):246ra97. PubMed PMID: 25101887.
  • Carlile GW, Robert R, Zhang D, et al. Correctors of protein trafficking defects identified by a novel high-throughput screening assay. Chembiochem Eur J Chem Biol. 2007 Jun 18;8(9):1012–1020. PubMed PMID: 17497613.
  • Phuan PW, Veit G, Tan J, et al. Synergy-based small-molecule screen using a human lung epithelial cell line yields DeltaF508-CFTR correctors that augment VX-809 maximal efficacy. Mol Pharmacol. 2014 Jul;86(1):42–51. PubMed PMID: 24737137; PubMed Central PMCID: PMCPMC4054004.
  • Dekkers JF, Berkers G, Kruisselbrink E, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016 Jun 22;8(344):344ra84. PubMed PMID: 27334259.
  • Guimbellot JS, Leach JM, Chaudhry IG, et al. Nasospheroids permit measurements of CFTR-dependent fluid transport. JCI Insight. 2017 Nov 16;2(22):95734. PubMed PMID: 29202459; PubMed Central PMCID: PMCPMC5752372.
  • Box GEP, Draper NR. Empirical model-building and response surfaces. New York: John Wiley and Sons, Inc; 1987.
  • Matthes E, Goepp J, Martini C, et al. Variable responses to CFTR correctors in vitro: estimating the design effect in precision medicine. Front Pharmacol. 2018;9. DOI:10.3389/fphar.2018.01490.
  • Pranke IM, Hatton A, Simonin J, et al. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci Rep. 2017 Aug 7;7(1):7375. PubMed PMID: 28785019; PubMed Central PMCID: PMCPMC5547155.
  • Farmen SL, Karp PH, Ng P, et al. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cl- transport and overexpression can generate basolateral CFTR [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’t]. Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1123–30. PubMed PMID: 16085675.
  • Zhang L, Button B, Gabriel SE, et al. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. PLoS Biol. 2009 Jul;7(7):e1000155. PubMed PMID: 19621064; PubMed Central PMCID: PMC2705187.
  • Sampson HM, Robert R, Liao J, et al. Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR. Chem Biol. 2011 Feb 25;18(2):231–242. PubMed PMID: 21338920.
  • Van Goor F, Hadida S, Grootenhuis PD, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18843–18848. PubMed PMID: 21976485; PubMed Central PMCID: PMC3219147.
  • Hudson RP, Dawson JE, Chong PA, et al. Direct binding of the corrector VX-809 to human CFTR NBD1: evidence of an allosteric coupling between the binding site and the NBD1: CL4Interface. Mol Pharmacol. 2017 Aug 1;92(2):124–135. PubMed PMID: WOS:000407023300003; English
  • Carlile GW, Yang Q, Matthes E, et al. A novel triple combination of pharmacological chaperones improves F508del-CFTR correction. Sci Rep. 2018 Jul 30;8(1):11404. PubMed PMID: 30061653; PubMed Central PMCID: PMCPMC6065411.
  • Sabirzhanova I, Lopes Pacheco M, Rapino D, et al. Rescuing trafficking mutants of the ATP-binding cassette protein, ABCA4, with small molecule correctors as a treatment for stargardt eye disease. J Biol Chem. 2015 Aug 7;290(32):19743–19755. PubMed PMID: 26092729; PubMed Central PMCID: PMCPMC4528136.
  • Miller JP, Drew L, Green O, et al. WS13.5 CFTR amplifiers are mutation-agnostic modulators that increase CFTR protein levels and complement other CF therapeutic modalities. J Cyst Fib. 2016;15:s22.
  • Chung WJ, Goeckeler-Fried JL, Havasi V, et al. Increasing the endoplasmic reticulum pool of the F508del allele of the cystic fibrosis transmembrane conductance regulator leads to greater folding correction by small molecule therapeutics. PLoS One. 2016;11(10):e0163615. PubMed PMID: 27732613; PubMed Central PMCID: PMCPMC5061379 alter our adherence to PLOS ONE policies on sharing data and materials..
  • Molinski SV, Ahmadi S, Ip W, et al. Orkambi(R) and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue. EMBO Mol Med. 2017 Sep;9(9):1224–1243. PubMed PMID: 28667089; PubMed Central PMCID: PMCPMC5582412.
  • Ou WJ, Bergeron JJ, Li Y, et al. Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J Biol Chem. 1995 Jul 28;270(30):18051–18059. PubMed PMID: 7629114; eng
  • Maattanen P, Gehring K, Bergeron JJ, et al. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol. 2010 Jul;21(5):500–511. PubMed PMID: 20347046.
  • Noel S, Wilke M, Bot AG, et al. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells. J Pharmacol Exp Ther. 2008 Jun;325(3):1016–1023. PubMed PMID: 18309088.
  • Loo MA, Jensen TJ, Cui L, et al. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. Embo J. 1998 Dec 1;17(23):6879–6887. PubMed PMID: 9843494; PubMed Central PMCID: PMCPMC1171036.
  • Grove DE, Rosser MF, Watkins RL, et al. Analysis of CFTR folding and degradation in transiently transfected cells. Methods Mol Biol. 2011;741:219–232. PubMed PMID: 21594788; PubMed Central PMCID: PMCPMC4460993.
  • Meacham GC, Lu Z, King S, et al. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. Embo J. 1999 Mar 15;18(6):1492–1505. PubMed PMID: 10075921; PubMed Central PMCID: PMCPMC1171238.
  • Coppinger JA, Hutt DM, Razvi A, et al. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One. 2012;7(5):e37682. PubMed PMID: 22701530; PubMed Central PMCID: PMCPMC3365120.
  • Farinha CM, Nogueira P, Mendes F, et al. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem J. 2002 Sep 15;366(Pt 3):797–806. PubMed PMID: 12069690; PubMed Central PMCID: PMCPMC1222832.
  • Wang X, Venable J, LaPointe P, et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell. 2006 Nov 17;127(4):803–815. S0092-8674(06)01378-X [pii]. PubMed PMID: 17110338; eng.
  • Meacham GC, Patterson C, Zhang W, et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol. 2001 Jan;3(1):100–105. PubMed PMID: 11146634.
  • Morito D, Hirao K, Oda Y, et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell. 2008 Apr;19(4):1328–1336. PubMed PMID: 18216283; PubMed Central PMCID: PMCPMC2291415.
  • Younger JM, Chen L, Ren HY, et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell. 2006 Aug 11;126(3):571–582. PubMed PMID: 16901789.
  • Saxena A, Banasavadi-Siddegowda YK, Fan Y, et al. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels. J Biol Chem. 2012 Jun 1;287(23):19158–19170. PubMed PMID: 22505710; PubMed Central PMCID: PMCPMC3365948.
  • Schmidt BZ, Watts RJ, Aridor M, et al. Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation. J Biol Chem. 2009 Feb 13;284(7):4168–4178. PubMed PMID: 19098309; PubMed Central PMCID: PMCPMC2640980.
  • Alberti S, Bohse K, Arndt V, et al. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell. 2004 Sep;15(9):4003–4010. PubMed PMID: 15215316; PubMed Central PMCID: PMCPMC515335.
  • Arndt V, Daniel C, Nastainczyk W, et al. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell. 2005 Dec;16(12):5891–5900. PubMed PMID: 16207813; PubMed Central PMCID: PMCPMC1289430.
  • Dai Q, Qian SB, Li HH, et al. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J Biol Chem. 2005 Nov 18;280(46):38673–38681. PubMed PMID: 16169850.
  • Sopha P, Kadokura H, Yamamoto YH, et al. A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins. Cell Struct Funct. 2012;37(2):177–187. PubMed PMID: 23018488.
  • Yamamoto YH, Kimura T, Momohara S, et al. A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR. Cell Struct Funct. 2010;35(2):107–116. PubMed PMID: 21150129.
  • Seo JH, Park JH, Lee EJ, et al. ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation. Nat Commun. 2016 Oct;6(7):12882. PubMed PMID: 27708256; PubMed Central PMCID: PMCPMC5059642.
  • Grove DE, Rosser MF, Ren HY, et al. Mechanisms for rescue of correctable folding defects in CFTRDelta F508. Mol Biol Cell. 2009 Sep;20(18):4059–4069. PubMed PMID: 19625452; PubMed Central PMCID: PMCPMC2743624.
  • Tomati V, Sondo E, Armirotti A, et al. Genetic inhibition of the ubiquitin ligase Rnf5 attenuates phenotypes associated to F508del cystic fibrosis mutation. Sci Rep. 2015 Jul;17(5):12138. PubMed PMID: 26183966; PubMed Central PMCID: PMCPMC4505316.
  • Landre V, Rotblat B, Melino S, et al. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget. 2014 Sep 30;5(18):7988–8013. PubMed PMID: 25237759; PubMed Central PMCID: PMCPMC4226663.
  • Sondo E, Falchi F, Caci E, et al. Pharmacological inhibition of the ubiquitin ligase RNF5 rescues F508del-CFTR in cystic fibrosis airway epithelia. Cell Chem Biol. 2018 Jul 19;25(7):891–905 e8. PubMed PMID: 29754957.
  • Liang X, Da Paula AC, Bozoky Z, et al. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Mol Biol Cell. 2012 Mar;23(6):996–1009. PubMed PMID: 22278744; PubMed Central PMCID: PMC3302758.
  • Stevers LM, Lam CV, Leysen SF, et al. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1152–61. PubMed PMID: 26888287; PubMed Central PMCID: PMCPMC4780605.
  • Fukuda R, Okiyoneda T. Peripheral protein quality control as a novel drug target for CFTR stabilizer. Front Pharmacol. 2018;9:1100. PubMed PMID: 30319426; PubMed Central PMCID: PMCPMC6170605.
  • Okiyoneda T, Barriere H, Bagdany M, et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science. 2010 Aug 13;329(5993):805–810. PubMed PMID: 20595578; PubMed Central PMCID: PMCPMC5026491.
  • Bagdany M, Veit G, Fukuda R, et al. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nat Commun. 2017 Aug 30;8(1):398. PubMed PMID: 28855508; PubMed Central PMCID: PMCPMC5577305.
  • Park HJ, Mylvaganum M, McPherson A, et al. A soluble sulfogalactosyl ceramide mimic promotes Delta F508 CFTR escape from endoplasmic reticulum associated degradation. Chem Biol. 2009 Apr 24;16(4):461–470. PubMed PMID: 19389632; PubMed Central PMCID: PMCPMC4375101.
  • Cho HJ, Gee HY, Baek KH, et al. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator. J Am Chem Soc. 2011 Dec 21;133(50):20267–20276. PubMed PMID: 22074182.
  • Luciani A, Villella VR, Esposito S, et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol. 2010 Sep;12(9):863–875. PubMed PMID: 20711182.
  • Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998 Dec 28;143(7):1883–1898. PubMed PMID: 9864362; PubMed Central PMCID: PMCPMC2175217.
  • Esposito S, Tosco A, Villella VR, et al. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis. Mol Cell Pediatr. 2016 Dec;3(1):13. PubMed PMID: 26976279; PubMed Central PMCID: PMCPMC4791443.
  • De Stefano D, Villella VR, Esposito S, et al. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy. 2014;10(11):2053–2074. PubMed PMID: 25350163; PubMed Central PMCID: PMCPMC4502695.
  • Tosco A, De Gregorio F, Esposito S, et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 2016 Aug;23(8):1380–1393. PubMed PMID: 27035618; PubMed Central PMCID: PMCPMC4947669.
  • Vu CB, Bridges RJ, Pena-Rasgado C, et al. Fatty acid cysteamine conjugates as novel and potent autophagy activators that enhance the correction of misfolded F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem. 2017 Jan 12;60(1):458–473. PubMed PMID: 27976892.
  • King R, Tuthill C. Immune modulation with thymosin alpha 1 treatment. Vitam Horm. 2016;102:151–178. PubMed PMID: 27450734.
  • Chaudhary K, Shinde R, Liu H, et al. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy. J Iimmunol. 2015 Jun 15;194(12):5713–5724. PubMed PMID: 25980011; PubMed Central PMCID: PMCPMC4458436.
  • Romani L, Oikonomou V, Moretti S, et al. Thymosin alpha1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med. 2017 May;23(5):590–600. PubMed PMID: 28394330; PubMed Central PMCID: PMCPMC5420451.
  • Tomati V, Caci E, Ferrera L, et al. Thymosin alpha-1 does not correct F508del-CFTR in cystic fibrosis airway epithelia. JCI Insight. 2018 Feb 8;3(3). PubMed PMID: 29415893; PubMed Central PMCID: PMCPMC5821210. DOI:10.1172/jci.insight.98699.
  • Matthes E, Hanrahan JW, Cantin AM. F508del-CFTR is not corrected by thymosin alpha1. Nat Med. 2018 Jul;24(7):890–891. PubMed PMID: 29942095.
  • Romani L, Stincardini C, Giovagnoli S, et al. Reply to ‘F508del-CFTR is not corrected by thymosin alpha1ʹ. Nat Med. 2018 Jul;24(7):891–893. PubMed PMID: 29942090.
  • Robert R, Carlile GW, Pavel C, et al. Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect [Comparative StudyResearch Support, Non-U.S. Gov’t]. Mol Pharmacol. 2008 Feb;73(2):478–489. PubMed PMID: 17975008.
  • Hutt DM, Herman D, Rodrigues AP, et al. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol. 2010 Jan;6(1):25–33. PubMed PMID: 19966789; PubMed Central PMCID: PMC2901172.
  • Carlile GW, Robert R, Goepp J, et al. Ibuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking. J Cystic Fibrosis. 2015 Jan;14(1):16–25. PubMed PMID: 24974227.
  • Robert R, Carlile GW, Liao J, et al. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine [Research Support, Non-U.S. Gov’t]. Mol Pharmacol. 2010 Jun;77(6):922–930. PubMed PMID: 20200141.
  • Trzcinska-Daneluti AM, Nguyen L, Jiang C, et al. Use of kinase inhibitors to correct ∆F508-CFTR function. MolCellProteomics. 2012;11:745–757.
  • Carlile GW, Keyzers RA, Teske KA, et al. Correction of F508del-CFTR trafficking by the sponge alkaloid latonduine is modulated by interaction with PARP. Chem Biol. 2012 Oct 26;19(10):1288–1299. PubMed PMID: 23102222.
  • Zhang D, Ciciriello F, Anjos SM, et al. Ouabain mimics low temperature rescue of F508del-CFTR in cystic fibrosis epithelial cells. Front Pharmacol. 2012;3:176. PubMed PMID: 23060796; PubMed Central PMCID: PMC3463858.
  • Moniz S, Sousa M, Moraes BJ, et al. HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR. ACS Chem Biol. 2013 Feb 15;8(2):432–442. PubMed PMID: 23148778.
  • Sondo E, Tomati V, Caci E, et al. Rescue of the mutant CFTR chloride channel by pharmacological correctors and low temperature analyzed by gene expression profiling. Am J Physiol Cell Physiol. 2011 Oct;301(4):C872–85. PubMed PMID: 21753184; PubMed Central PMCID: PMCPMC3512166.
  • Bergougnoux A, Petit A, Knabe L, et al. The HDAC inhibitor SAHA does not rescue CFTR membrane expression in cystic fibrosis. Int J Biochem Cell Biol. 2017 Jul;88:124–132. . PubMed PMID: 28478266.
  • Anonymous. Withdrawl of glafenine. Lancet. 1992;339:357.
  • Chiu AMMJ, Loganathan SK, Alka K, et al. High throughput assay identifies glafenine as a corrector for the folding defect in corneal dystrophy-causing mutants of SLC4A11. Invest Ophthalmol Vis Sci. 2015;56:7739–7753.
  • Alka K, Casey J. Molecular phenotype of SLC4A11 missense mutants: setting the stage for personalized medicine in corneal dystrophies. Hum Mutat. 2018;39:1002(Jan 11).
  • Perkins LA, Fisher GW, Naganbabu M, et al. High-content surface and total expression siRNA kinase library screen with VX-809 treatment reveals kinase targets that enhance F508del-CFTR rescue. Mol Pharm. 2018 Mar 5;15(3):759–767. PubMed PMID: 29384380; PubMed Central PMCID: PMCPMC5844356.
  • Carlile GW, Robert R, Matthes E, et al. Latonduine analogs restore F508del-cystic fibrosis transmembrane conductance regulator trafficking through the modulation of poly-ADP ribose polymerase 3 and poly-ADP ribose polymerase 16 activity. Mol Pharmacol. 2016 Aug;90(2):65–79. PubMed PMID: 27193581.
  • Zhang S, Malmersjo S, Li J, et al. Distinct role of the N-terminal tail of the Na,K-ATPase catalytic subunit as a signal transducer. J Biol Chem. 2006 Aug 4;281(31):21954–21962. PubMed PMID: 16723354.
  • Li J, Zelenin S, Aperia A, et al. Low doses of ouabain protect from serum deprivation-triggered apoptosis and stimulate kidney cell proliferation via activation of NF-kappaB. J Am Soc Nephrol. 2006 Jul;17(7):1848–1857. PubMed PMID: 16707566.
  • Srivastava M, Eidelman O, Zhang J, et al. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7693–7698. PubMed PMID: 15136726; PubMed Central PMCID: PMCPMC419668.
  • Favia M, Guerra L, Fanelli T, et al. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells. Mol Biol Cell. 2010 Jan 1;21(1):73–86. PubMed PMID: 19889841; PubMed Central PMCID: PMC2801722.
  • White NM, Jiang D, Burgess JD, et al. Altered cholesterol homeostasis in cultured and in vivo models of cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L476–86. PubMed PMID: 17085523.
  • Fang D, West RH, Manson ME, et al. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis. Respir Res. 2010;11:61. PubMed PMID: 20487541; PubMed Central PMCID: PMC2880018.
  • Gentzsch M, Choudhury A, Chang XB, et al. Misassembled mutant deltaF508 CFTR in the distal secretory pathway alters cellular lipid trafficking. J Cell Sci. 2007;120:447–455.
  • Abu-Arish A, Pandzic E, Goepp J, et al. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells. Biophys J. 2015;109(1):85–94.
  • Freedman SD, Katz MH, Parker EM, et al. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr-/- mice. ProcNatlAcadSciUSA. 1999;1999(96):13995–14000.
  • Guilbault C, Wojewodka G, Saeed Z, et al. Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am J Respir Cell Mol Biol. 2009;41(1):100–106. PubMed PMID: Medline:19059886; English.
  • Grassmé H, Jendrossek V, Riehle A, et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med. 2003;9:322–330.
  • Laviad EL, Kelly S, Merrill AH Jr. et al. Modulation of ceramide synthase activity via dimerization. J Biol Chem. 2012 Jun 15;287(25):21025–21033. . PubMed PMID: 22539345; PubMed Central PMCID: PMCPMC3375526.
  • Guilbault C, De Sanctis JB, Wojewodka G, et al. Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am J Respir Cell Mol Biol. 2008 Jan;38(1):47–56. PubMed PMID: 17656682.
  • Wojewodka G, De Sanctis JB, Radzioch D. Ceramide in cystic fibrosis: a potential new target for therapeutic intervention. J Lipids. 2011;674968. DOI:10.1155/2011/674968. PubMed PMID: 21490807; PubMed Central PMCID: PMC3066841.
  • Garic D, De Sanctis JB, Wojewodka G, et al. Fenretinide differentially modulates the levels of long- and very long-chain ceramides by downregulating Cers5 enzyme: evidence from bench to bedside. J Mol Med (Berl). 2017 Oct;95(10):1053–1064. PubMed PMID: 28695226.
  • Caputo A, Caci E, Ferrera L, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322:590–594.
  • Schroeder BC, Cheng T, Jan YN, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008 Sep 19;134(6):1019–1029. PubMed PMID: 18805094; PubMed Central PMCID: PMCPMC2651354.
  • Yang YD, Cho H, Koo JY, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008 Oct 30;455(7217):1210–1215. PubMed PMID: 18724360.
  • Galietta LJ, Pagesy P, Folli C, et al. IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. JImmunol. 2002;168:839–845.
  • Huang F, Zhang H, Wu M, et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16354–16359. PubMed PMID: 22988107; PubMed Central PMCID: PMCPMC3479591.
  • Anagnostopoulou P, Riederer B, Duerr J, et al. SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation. J Clin Invest. 2012 Oct;122(10):3629–3634. PubMed PMID: 22945630; PubMed Central PMCID: PMCPMC3461899.
  • Sun L, Rommens JM, Corvol H, et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet. 2012 May;44(5):562–569. PubMed PMID: 22466613; PubMed Central PMCID: PMCPMC3371103.
  • Strug LJ, Gonska T, He G, et al. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics. Hum Mol Genet. 2016 Oct 15;25(20):4590–4600. PubMed PMID: 28171547; PubMed Central PMCID: PMCPMC5886039.
  • Bertrand CA, Zhang R, Pilewski JM, et al. SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia. J Gen Physiol. 2009;133:421–438.
  • Bertrand CA, Mitra S, Mishra SK, et al. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9. Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L912–L925. PubMed PMID: 28360110; PubMed Central PMCID: PMCPMC5495941.
  • Li H, Salomon JJ, Sheppard DN, et al. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Curr Opin Pharmacol. 2017 Jun;34:91–97. PubMed PMID: 29065356.
  • Joo NS, Jeong JH, Cho HJ, et al. Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel. Sci Rep-Uk. 2016 Nov;10:6. PubMed PMID: WOS:000388090100001; English.
  • Astrand ABM, Hemmerling M, Root J, et al. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol-Lung C. 2015 Jan 1;308(1):L22–L32. PubMed PMID: WOS:000347230700003; English
  • Hirsh AJ, Sabater JR, Zamurs A, et al. Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease. J Pharmacol Exp Ther. 2004 Dec;311(3):929–938. PubMed PMID: WOS:000225198200009; English.
  • Knowles MR, Church NL, Waltner WE, et al. A pilot-study of aerosolized amiloride for the treatment of lung-disease in cystic-fibrosis. New Engl J Med. 1990 Apr 26;322(17):1189–1194. PubMed PMID: WOS:A1990DA35100004; English
  • O’Riordan TG, Donn KH, Hodsman P, et al. Acute hyperkalemia associated with inhalation of a potent ENaC antagonist: phase 1 trial of GS-9411. J Aerosol Med Pulm D. 2014 Jun;27(3):200–208. PubMed PMID: WOS:000337165400006; English.
  • Coote KJ, Paisley D, Czarnecki S, et al. NVP-QBE170: an inhaled blocker of the epithelial sodium channel with a reduced potential to induce hyperkalaemia. Br J Pharmacol. 2015 Jun;172(11):2814–2826. PubMed PMID: 25573195; PubMed Central PMCID: PMCPMC4439877.
  • Terryah ST, Fellner RC, Ahmad S, et al. Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol-Lung C. 2018 Jan;314(1):L192–L205. PubMed PMID: WOS:000426199600004; English.
  • Scott DW, Walker MP, Sesma J, et al. SPX-101 is a novel epithelial sodium channel-targeted therapeutic for cystic fibrosis that restores mucus transport. Am J Resp Crit Care. 2017 Sep 15;196(6):734–744. PubMed PMID: WOS:000410857700016; English
  • Rollins BM, Garcia-Caballero A, Stutts MJ, et al. SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels. 2010 Jul-Aug;4(4):255–259. PubMed PMID: WOS:000284336200003; English.
  • Hobbs CA, Blanchard MG, Alijevic O, et al. Identification of the SPLUNC1 ENaC- inhibitory domain yields novel strategies to treat sodium hyperabsorption in cystic fibrosis airway epithelial cultures. Am J Physiol-Lung C. 2013 Dec;305(12):L990–L1001. PubMed PMID: WOS:000328750900010; English.
  • Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets. 2018 Jul 20. DOI:10.1080/14728222.2018.1501361. PubMed PMID: 30028216.
  • Tagalakis AD, Munye MM, Ivanova R, et al. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax. 2018;73:847–856. in press.
  • Di Gioia S, Trapani A, Castellani S, et al. Nanocomplexes for gene therapy of respiratory diseases: targeting and overcoming the mucus barrier. Pulm Pharmacol Ther. 2015 Oct;34:8–24. PubMed PMID: WOS:000363353100002; English.
  • Manunta MDI, Tagalakis AD, Attwood M, et al. Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis. Sci Rep. 2017 Apr 6;7(1):700. PubMed PMID: 28386087; PubMed Central PMCID: PMCPMC5428798.
  • Scannell JW, Blanckley A, Boldon H, et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012 Mar 1;11(3):191–200. PubMed PMID: 22378269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.