696
Views
44
CrossRef citations to date
0
Altmetric
Review

FOXM1: a potential therapeutic target in human solid cancers

&
Pages 205-217 | Received 12 Nov 2019, Accepted 06 Feb 2020, Published online: 19 Feb 2020

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674.
  • Halasi M, Gartel AL. Targeting FOXM1 in cancer. Biochem Pharmacol. 2013 Mar 1;85(5):644–652.
  • Radhakrishnan SK, Bhat UG, Hughes DE, et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res. 2006 Oct 1;66(19):9731–9735.
  • Bhat UG, Halasi M, Gartel AL. Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells. PLoS One. 2009;4(5):e5592.
  • Khan I, Halasi M, Patel A, et al. FOXM1 contributes to treatment failure in acute myeloid leukemia. JCI Insight. 2018 Aug 9;3(15) pii: 12158.
  • Halasi M, Varaljai R, Benevolenskaya E, et al. A novel function of molecular chaperone HSP70: suppression of oncogenic FOXM1 after proteotoxic stress. J Biol Chem. 2016 Jan 1;291(1):142–148.
  • Halasi M, Hitchinson B, Shah BN, et al. Honokiol is a FOXM1 antagonist. Cell Death Dis. 2018 Jan 24;9(2):84.
  • Gormally MV, Dexheimer TS, Marsico G, et al. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition. Nat Commun. 2014 Nov 12;5:5165.
  • Ziegler Y, Laws MJ, Sanabria Guillen V, et al. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. NPJ Breast Cancer. 2019;5:45.
  • Li F, Yao FS, Zhu XJ, et al. A randomized phase II, open-label and multicenter study of combination regimens of bortezomib at two doses by subcutaneous injection for newly diagnosed multiple myeloma patients. J Cancer Res Clin Oncol. 2019 Sep;145(9):2343–2355.
  • Dimopoulos MA, Laubach JP, Echeveste Gutierrez MA, et al. Ixazomib maintenance therapy in newly diagnosed multiple myeloma: an integrated analysis of four phase I/II studies. Eur J Haematol. 2019 Jun;102(6):494–503.
  • Halasi M, Gartel AL. FOX(M1) news–it is cancer. Mol Cancer Ther. 2013 Mar;12(3):245–254.
  • Nitulescu GM, Margina D, Juzenas P, et al. Akt inhibitors in cancer treatment: the long journey from drug discovery to clinical use (Review). Int J Oncol. 2016 Mar;48(3):869–885.
  • Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019 Dec;59:125–132.
  • Hasanabady MH, Kalalinia F. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. J Biosci. 2016 Jun;41(2):313–324.
  • Labriere C, Talapatra SK, Thoret S, et al. New MKLP-2 inhibitors in the paprotrain series: design, synthesis and biological evaluations. Bioorg Med Chem. 2016 Feb 15;24(4):721–734.
  • Kazemi A, Sadri M, Houshmand M, et al. The anticancer effects of pharmacological inhibition of autophagy in acute erythroid leukemia cells. Anticancer Drugs. 2018 Nov;29(10):944–955.
  • Dalva-Aydemir S, Akyerli CB, Yuksel SK, et al. Toward in vitro epigenetic drug design for thyroid cancer: the promise of PF-03814735, an aurora kinase inhibitor. OMICS. 2019 Oct;23(10):486–495.
  • Hwang RF, Yokoi K, Bucana CD, et al. Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res. 2003 Dec 15;9(17):6534–6544.
  • DD L, Zhao CH, Ding HW, et al. A novel inhibitor of ADAM17 sensitizes colorectal cancer cells to 5-Fluorouracil by reversing Notch and epithelial-mesenchymal transition in vitro and in vivo. Cell Prolif. 2018 Oct;51(5):e12480.
  • Zhang X, Shao J, Li X, et al. Docetaxel promotes cell apoptosis and decreases SOX2 expression in CD133expressing hepatocellular carcinoma stem cells by suppressing the PI3K/AKT signaling pathway. Oncol Rep. 2019 Feb;41(2):1067–1074.
  • Sottile F, Gnemmi I, Cantilena S, et al. A chemical screen identifies the chemotherapeutic drug topotecan as a specific inhibitor of the B-MYB/MYCN axis in neuroblastoma. Oncotarget. 2012 May;3(5):535–545.
  • Vistain LF, Yamamoto N, Rathore R, et al. Targeted inhibition of snail activity in breast cancer cells by using a Co(III) -ebox conjugate. Chembiochem. 2015 Sep 21;16(14):2065–2072.
  • Evans JP, Winiarski BK, Sutton PA, et al. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget. 2018 Jun 5;9(43):27104–27116.
  • Liu AY, Kanan AD, Radon TP, et al. AGR2, a unique tumor-associated antigen, is a promising candidate for antibody targeting. Oncotarget. 2019 Jul 2;10(42):4276–4289.
  • Rhoades Smith KE, Bilen MA. A review of papillary renal cell carcinoma and MET inhibitors. Kidney Cancer. 2019 Nov 1;3(3):151–161.
  • Jiang W, Lin M, Wang Z. Dioscin: A new potential inhibitor of Skp2 for cancer therapy. EBioMedicine. 2020 Jan 2;51:102593.
  • Liu X, Long Z, Cai H, et al. TRIM58 suppresses the tumor growth in gastric cancer by inactivation of beta-catenin signaling via ubiquitination. Cancer Biol Ther. 2020;21(3):203-212.
  • Eriksson P, Aine M, Veerla S, et al. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics. 2015 May 26;8:25.
  • Hedegaard J, Lamy P, Nordentoft I, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell. 2016 Jul 11;30(1):27–42.
  • Roh YG, Mun MH, Jeong MS, et al. Drug resistance of bladder cancer cells through activation of ABCG2 by FOXM1. BMB Rep. 2018 Feb;51(2):98–103.
  • Rinaldetti S, Wirtz R, Worst TS, et al. FOXM1 predicts disease progression in non-muscle invasive bladder cancer. J Cancer Res Clin Oncol. 2018 Sep;144(9):1701–1709.
  • Ahn H, Sim J, Abdul R, et al. Increased expression of forkhead box M1 is associated with aggressive phenotype and poor prognosis in estrogen receptor-positive breast cancer. J Korean Med Sci. 2015 Apr;30(4):390–397.
  • Abdeljaoued S, Bettaieb I, Nasri M, et al. Overexpression of FOXM1 is a potential prognostic marker in male breast cancer. Oncol Res Treat. 2017;40(4):167–172.
  • Khongkow P, Gomes AR, Gong C, et al. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene. 2016 Feb 25;35(8):990–1002.
  • Wonsey DR, Follettie MT. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 2005 Jun 15;65(12):5181–5189.
  • Hamurcu Z, Delibasi N, Nalbantoglu U, et al. FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells. J Mol Med (Berl). 2019 Apr;97(4):491–508.
  • Yang N, Wang C, Wang Z, et al. FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 2017 Jun 15;36(24):3428–3440.
  • Yu G, Zhou A, Xue J, et al. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway. Oncotarget. 2015 May 10;6(13):11281–11294.
  • Liu L, Shen H, Wang Y. CRY2 is suppressed by FOXM1 mediated promoter hypermethylation in breast cancer. Biochem Biophys Res Commun. 2017 Aug 12;490(1):44–50.
  • Jiao X, Yu W, Qian J, et al. ADAM-17 is a poor prognostic indicator for patients with hilar cholangiocarcinoma and is regulated by FoxM1. BMC Cancer. 2018 May 18;18(1):570.
  • Intuyod K, Saavedra-Garcia P, Zona S, et al. FOXM1 modulates 5-fluorouracil sensitivity in cholangiocarcinoma through thymidylate synthase (TYMS): implications of FOXM1-TYMS axis uncoupling in 5-FU resistance. Cell Death Dis. 2018 Dec 11;9(12):1185.
  • Weng W, Okugawa Y, Toden S, et al. FOXM1 and FOXQ1 are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer. Clin Cancer Res. 2016 Oct 1;22(19):4947–4957.
  • Zhang H, Zhong H, Li L, et al. Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer. Mol Med Rep. 2016 Mar;13(3):2696–2700.
  • Fei BY, He X, Ma J, et al. FoxM1 is associated with metastasis in colorectal cancer through induction of the epithelial-mesenchymal transition. Oncol Lett. 2017 Dec;14(6):6553–6561.
  • Zheng Y, Guo J, Zhou J, et al. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics. 2015 Aug 12;8:49.
  • Song IS, Jeong YJ, Jeong SH, et al. FOXM1-induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function. Gastroenterology. 2015 Oct;149(4):1006–16 e9.
  • Zhang X, Zhang L, Du Y, et al. A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene. 2017 Feb 9;36(6):807–819.
  • Gartel AL. FOXM1 in cancer: interactions and vulnerabilities. Cancer Res. 2017 Jun 15;77(12):3135–3139.
  • Song L, Wang X, Feng Z. Overexpression of FOXM1 as a target for malignant progression of esophageal squamous cell carcinoma. Oncol Lett. 2018 Apr;15(4):5910–5914.
  • Xiao Z, Jia Y, Jiang W, et al. FOXM1: A potential indicator to predict lymphatic metastatic recurrence in stage IIA esophageal squamous cell carcinoma. Thorac Cancer. 2018 Aug;9(8):997–1004.
  • Nicolau-Neto P, Palumbo A, De Martino M, et al. UBE2C is a transcriptional target of the cell cycle regulator FOXM1. Genes (Basel). 2018 Mar 29;9(4):188.
  • Zhang J, Chen XY, Huang KJ, et al. Expression of FoxM1 and the EMT-associated protein E-cadherin in gastric cancer and its clinical significance. Oncol Lett. 2016 Oct;12(4):2445–2450.
  • Fang W, Qian J, Wu Q, et al. ADAM-17 expression is enhanced by FoxM1 and is a poor prognostic sign in gastric carcinoma. J Surg Res. 2017;220:223–233.
  • Yang L, Cui M, Zhang L, et al. FOXM1 facilitates gastric cancer cell migration and invasion by inducing Cathepsin D. Oncotarget. 2017 Sep 15;8(40):68180–68190.
  • Zhang Y, Ye X, Chen L, et al. PARI functions as a new transcriptional target of FOXM1 involved in gastric cancer development. Int J Biol Sci. 2018;14(5):531–541.
  • Cai H, Chen J, He B, et al. A FOXM1 related long non-coding RNA contributes to gastric cancer cell migration. Mol Cell Biochem. 2015 Aug;406(1–2):31–41.
  • Xu MD, Wang Y, Weng W, et al. A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clin Cancer Res. 2017 Apr 15;23(8):2071–2080.
  • Wu J, Qin W, Wang Y, et al. SPDEF is overexpressed in gastric cancer and triggers cell proliferation by forming a positive regulation loop with FoxM1. J Cell Biochem. 2018 Nov;119(11):9042–9054.
  • Lee Y, Kim KH, Kim DG, et al. FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One. 2015;10(10):e0137703.
  • Maachani UB, Shankavaram U, Kramp T, et al. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget. 2016 Nov 22;7(47):77365–77377.
  • Peng WX, Han X, Zhang CL, et al. FoxM1-mediated RFC5 expression promotes temozolomide resistance. Cell Biol Toxicol. 2017 Dec;33(6):527–537.
  • Guo L, Ding Z, Huang N, et al. Forkhead Box M1 positively regulates UBE2C and protects glioma cells from autophagic death. Cell Cycle. 2017 Sep 17;16(18):1705–1718.
  • Gong AH, Wei P, Zhang S, et al. FoxM1 drives a feed-forward STAT3-activation signaling loop that promotes the self-renewal and tumorigenicity of glioblastoma stem-like cells. Cancer Res. 2015 Jun 1;75(11):2337–2348.
  • Xue J, Zhou A, Tan C, et al. Forkhead box M1 is essential for nuclear localization of glioma-associated oncogene homolog 1 in glioblastoma multiforme cells by promoting importin-7 expression. J Biol Chem. 2015 Jul 24;290(30):18662–18670.
  • Wang K, Chen D, Qian Z, et al. Hedgehog/Gli1 signaling pathway regulates MGMT expression and chemoresistance to temozolomide in human glioblastoma. Cancer Cell Int. 2017;17:117.
  • Zhang C, Han X, Xu X, et al. FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma. Cell Death Dis. 2018 May 1;9(5):469.
  • Zhang X, Lv QL, Huang YT, et al. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. J Exp Clin Cancer Res. 2017 Aug 7;36(1):105.
  • Zhang S, Zhao BS, Zhou A, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017 Apr 10;31(4):591–606 e6.
  • Egawa M, Yoshida Y, Ogura S, et al. Increased expression of Forkhead box M1 transcription factor is associated with clinicopathological features and confers a poor prognosis in human hepatocellular carcinoma. Hepatol Res. 2017 Oct;47(11):1196–1205.
  • Meng FD, Wei JC, Qu K, et al. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol. 2015 Jan 7;21(1):196–213.
  • Yu CP, Yu S, Shi L, et al. FoxM1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by targeting Snai1. Mol Med Rep. 2017 Oct;16(4):5181–5188.
  • Chai N, Xie HH, Yin JP, et al. FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1. Biochem Biophys Res Commun. 2018 Jun 12;500(4):924–929.
  • Yang YF, Pan YH, Cao Y, et al. PDZ binding kinase, regulated by FoxM1, enhances malignant phenotype via activation of beta-Catenin signaling in hepatocellular carcinoma. Oncotarget. 2017 Jul 18;8(29):47195–47205.
  • Han B, Shin HJ, Bak IS, et al. Peroxiredoxin I is important for cancer-cell survival in Ras-induced hepatic tumorigenesis. Oncotarget. 2016 Oct 18;7(42):68044–68056.
  • Chen F, Bai G, Li Y, et al. A positive feedback loop of long noncoding RNA CCAT2 and FOXM1 promotes hepatocellular carcinoma growth. Am J Cancer Res. 2017;7(7):1423–1434.
  • Yan D, Yan X, Dai X, et al. Activation of AKT/AP1/FoxM1 signaling confers sorafenib resistance to liver cancer cells. Oncol Rep. 2019 Aug;42(2):785–796.
  • Hu G, Yan Z, Zhang C, et al. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression. J Exp Clin Cancer Res. 2019 May 9;38(1):188.
  • Zhi Y, Abudoureyimu M, Zhou H, et al. FOXM1-mediated LINC-ROR regulates the proliferation and sensitivity to sorafenib in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2019 Jun 7;16:576–588.
  • Zhang T, Guo J, Gu J, et al. KIAA0101 is a novel transcriptional target of FoxM1 and is involved in the regulation of hepatocellular carcinoma microvascular invasion by regulating epithelial-mesenchymal transition. J Cancer. 2019;10(15):3501–3516.
  • Sun Q, Dong M, Chen Y, et al. Prognostic significance of FoxM1 expression in non-small cell lung cancer. J Thorac Dis. 2016 Jun;8(6):1269–1273.
  • Milewski D, Balli D, Ustiyan V, et al. FOXM1 activates AGR2 and causes progression of lung adenomas into invasive mucinous adenocarcinomas. PLoS Genet. 2017 Dec;13(12):e1007097.
  • Wei P, Zhang N, Wang Y, et al. FOXM1 promotes lung adenocarcinoma invasion and metastasis by upregulating SNAIL. Int J Biol Sci. 2015;11(2):186–198.
  • Xiu G, Sui X, Wang Y, et al. FOXM1 regulates radiosensitivity of lung cancer cell partly by upregulating KIF20A. Eur J Pharmacol. 2018 Aug 15;833:79–85.
  • Wang Y, Zhang W, Wen L, et al. FOXM1 confers resistance to gefitinib in lung adenocarcinoma via a MET/AKT-dependent positive feedback loop. Oncotarget. 2016 Sep 13;7(37):59245–59259.
  • Shukla S, Milewski D, Pradhan A, et al. The FOXM1 inhibitor RCM-1 decreases carcinogenesis and nuclear beta-catenin. Mol Cancer Ther. 2019 Jul;18(7):1217–1229.
  • Ito T, Kohashi K, Yamada Y, et al. Prognostic significance of forkhead Box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in angiosarcoma. J Cancer. 2016;7(7):823–830.
  • Miyashita A, Fukushima S, Nakahara S, et al. Investigation of FOXM1 as a potential new target for melanoma. PLoS One. 2015;10(12):e0144241.
  • Bian D, Wu Y, Song G. Novel circular RNA, hsa_circ_0025039 promotes cell growth, invasion and glucose metabolism in malignant melanoma via the miR-198/CDK4 axis. Biomed Pharmacother. 2018 Dec;108:165–176.
  • Yang HL, Wen L, Wen ML, et al. FoxM1 promotes epithelial-mesenchymal transition, invasion, and migration of tongue squamous cell carcinoma cells through a c-Met/AKT-dependent positive feedback loop. Anti-Cancer Drug. 2018 Mar;29(3):216–226.
  • Krishnan A, Babu PSS, Jagadeeshan S, et al. Oncogenic actions of SKP2 involves deregulation of CDK1 turnover mediated by FOXM1. J Cell Biochem. 2017 Apr;118(4):797–807.
  • Fan CL, Jiang J, Liu HC, et al. Forkhead box protein M1 predicts outcome in human osteosarcoma. Int J Clin Exp Med. 2015;8(9):15563–15568.
  • Li Y, Zhang T, Zhang Y, et al. Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosarcoma. Cancer Sci. 2018 Oct;109(10):3093–3104.
  • Barger CJ, Zhang W, Hillman J, et al. Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget. 2015 Sep 29;6(29):27613–27627.
  • Pratheeshkumar P, Divya SP, Parvathareddy SK, et al. FoxM1 and beta-catenin predicts aggressiveness in Middle Eastern ovarian cancer and their co-targeting impairs the growth of ovarian cancer cells. Oncotarget. 2018 Jan 9;9(3):3590–3604.
  • Chan DW, Hui WW, Wang JJ, et al. DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-beta/SMAD4 signaling. Oncogene. 2017 Mar;36(10):1404–1416.
  • Jin C, Liu Z, Li Y, et al. PCNA-associated factor P15(PAF), targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer. 2018 Dec 1;143(11):2973–2984.
  • Cui J, Xia T, Xie D, et al. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene. 2016 Sep 8;35(36):4708–4718.
  • Kim MY, Jung AR, Kim GE, et al. High FOXM1 expression is a prognostic marker for poor clinical outcomes in prostate cancer. J Cancer. 2019;10(3):749–756.
  • Cheng XH, Black M, Ustiyan V, et al. SPDEF inhibits prostate carcinogenesis by disrupting a positive feedback loop in regulation of the Foxm1 oncogene. PLoS Genet. 2014 Sep;10(9):e1004656.
  • Liu Y, Liu Y, Yuan B, et al. FOXM1 promotes the progression of prostate cancer by regulating PSA gene transcription. Oncotarget. 2017 Mar 7;8(10):17027–17037.
  • Bellelli R, Castellone MD, Garcia-Rostan G, et al. FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocr Relat Cancer. 2012 Oct;19(5):695–710.
  • Wang G, Wang X, Jin Y. LINC01410/miR-3619-5p/FOXM1 feedback loop regulates papillary thyroid carcinoma cell proliferation and apoptosis. Cancer Biother Radiopharm. 2019 Nov;34(9):572–580.
  • Barger CJ, Branick C, Chee L, et al. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers (Basel). 2019 Feb 21;11(2):251.
  • Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015 Aug;21(8):938–945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.