370
Views
4
CrossRef citations to date
0
Altmetric
Review

Pre-clinical models of small cell lung cancer and the validation of therapeutic targets

, & ORCID Icon
Pages 187-204 | Received 30 Sep 2019, Accepted 17 Feb 2020, Published online: 26 Feb 2020

References

  • Govindan R, Page N, Morgensztern D, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006 Oct 1;24(28):4539–4544.
  • Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer. 2017 Nov 10;17(12):765.
  • Farago AF, Keane FK. Current standards for clinical management of small cell lung cancer. Transl Lung Cancer Res. 2018 Feb;7(1):69–79.
  • Socinski MA, Smit EF, Lorigan P, et al. Phase III study of pemetrexed plus carboplatin compared with etoposide plus carboplatin in chemotherapy-naive patients with extensive-stage small-cell lung cancer. J Clin Oncol. 2009 Oct 1;27(28):4787–4792.
  • Ettinger DS, Aisner J. Changing face of small-cell lung cancer: real and artifact. J Clin Oncol. 2006 Oct 1;24(28):4526–4527.
  • Zelen M. Keynote address on biostatistics and data retrieval. Cancer Chemother Rep. 1973 Mar 3;4(2):31–42.
  • Shepherd FA, Crowley J, Van Houtte P, et al. The international association for the study of lung cancer lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol. 2007 Dec;2(12):1067–1077.
  • Nicholson AG, Chansky K, Crowley J, et al. The International association for the study of lung cancer lung cancer staging project: PROPOSALS for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2016 Mar;11(3):300–311.
  • Rudin CM, Poirier JT, Byers LA, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019 May;19(5):289–297.
  • Oronsky B, Reid TR, Oronsky A, et al. What’s new in SCLC? A review. Neoplasia. 2017 Oct;19(10):842–847.
  • Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer. 2015 Mar 1;121(5):664–672.
  • Mullard A. Cancer stem cell candidate Rova-T discontinued. Nat Rev Drug Discov. 2019 Oct;18(11):814.
  • van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011 Nov 12;378(9804):1741–1755.
  • Horn L, Mansfield AS, Szczesna A, et al. First-Line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018 Dec 6;379(23):2220–2229.
  • Tian Y, Zhai X, Han A, et al. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer. J Hematol Oncol. 2019 Jun 28;12(1):67.
  • Zhou K, Zhou J, Huang J, et al. Cost-effectiveness analysis of atezolizumab plus chemotherapy in the first-line treatment of extensive-stage small-cell lung cancer. Lung Cancer. 2019 Apr;130:1–4.
  • Mansfield AS, Kazarnowicz A, Karaseva N, et al. Safety and patient-reported outcomes of atezolizumab, carboplatin, and etoposide in extensive-stage small-cell lung cancer (IMpower133): a randomized phase I/III trial. Ann Oncol. 2020 Feb;31(2):310–317.
  • Ulrich AB, Pour PM. Cell lines. In: Brenner S, Miller JH, editors. Encyclopedia of genetics. New York: Academic Press; 2001. p. 310–311.
  • Berendsen HH, de Leij L, de Vries EG, et al. Characterization of three small cell lung cancer cell lines established from one patient during longitudinal follow-up. Cancer Res. 1988 Dec 1;48(23):6891–6899.
  • Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016 Sep 26;38(6):590–600.
  • Clinton J, McWilliams-Koeppen P. Initiation, expansion, and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture. Curr Protoc Cell Biol. 2019 Mar;82(1):e66.
  • Gomez-Cuadrado L, Tracey N, Ma R, et al. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017 Sep 1;10(9):1061–1074.
  • van Lamsweerde AL, Henry N, Vaes G. Metastatic heterogeneity of cells from Lewis lung carcinoma. Cancer Res. 1983 Nov;43(11):5314–5320.
  • Oboshi S, Tsugawa S, Seido T, et al. A new floating cell line derived from human pulmonary carcinoma of oat cell type. Gan. 1971 Dec;62(6):505–514.
  • Gazdar AF, Gao B, Minna JD. Lung cancer cell lines: useless artifacts or invaluable tools for medical science? Lung Cancer. 2010 Jun;68(3):309–318.
  • Hynds RE, Vladimirou E, Janes SM. The secret lives of cancer cell lines. Dis Model Mech. 2018 Nov 16;11(11).DOI: 10.1242/dmm.037366.
  • Ben-David U, Siranosian B, Ha G, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018 Aug;560(7718):325–330.
  • De Carvalho DD, Sharma S, You JS, et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell. 2012 May 15;21(5):655–667.
  • Polley E, Kunkel M, Evans D, et al. Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J Natl Cancer Inst. 2016 Oct;108(10).DOI: 10.1093/jnci/djw122
  • Heighway J, Betticher D. Lung: small cell cancer. Atlas Genet Cytogenet OncolHaematol. 2004;8(3):257–259.
  • George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015 Aug 6;524(7563):47–53.
  • Daniel VC, Marchionni L, Hierman JS, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009 Apr 15;69(8):3364–3373.
  • Drapkin BJ, George J, Christensen CL, et al. Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov. 2018 May;8(5):600–615.
  • Lallo A, Gulati S, Schenk MW, et al. Ex vivo culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeutics. Br J Pharmacol. 2019 Feb;176(3):436–450.
  • Bleijs M, van de Wetering M, Clevers H, et al. Xenograft and organoid model systems in cancer research. Embo J. 2019 Aug 1;38(15):e101654.
  • Olabiran Y, Ledermann JA, Marston NJ, et al. The selection of antibodies for targeted therapy of small-cell lung cancer (SCLC) using a human tumour spheroid model to compare the uptake of cluster 1 and cluster w4 antibodies. Br J Cancer. 1994 Feb;69(2):247–252.
  • Wang P, Gao Q, Suo Z, et al. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One. 2013;8(3):e57020.
  • Klameth L, Rath B, Hochmaier M, et al. Small cell lung cancer: model of circulating tumor cell tumorospheres in chemoresistance. Sci Rep. 2017 Jul 13;7(1):5337.
  • Hamilton G, Hochmair M, Rath B, et al. Small cell lung cancer: circulating tumor cells of extended stage patients express a mesenchymal-epithelial transition phenotype. Cell Adh Migr. 2016 Jul 3;10(4):360–367.
  • Yang L, Yang S, Li X, et al. Tumor organoids: from inception to future in cancer research. Cancer Lett. 2019 Jul;10(454):120–133.
  • Aboulkheyr Es H, Montazeri L, Aref AR, et al. Personalized Cancer medicine: an organoid approach. Trends Biotechnol. 2018 Apr;36(4):358–371. DOI: 10.1016/j.tibtech.2017.12.005. Epub 2018 Jan 20.
  • Kim M, Chun S-M, Mun H, et al. Abstract 4832: establishment of lung cancer organoid lines as a new preclinical model for lung cancer. Cancer Res. 2017;77(13 Supplement):4832.
  • Jung DJ, Shin TH, Kim M, et al. A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab Chip. 2019 Sep 7;19(17):2854–2865.
  • Mishra DK, Thrall MJ, Baird BN, et al. Human lung cancer cells grown on acellular rat lung matrix create perfusable tumor nodules. Ann Thorac Surg. 2012 Apr;93(4):1075–1081.
  • Mishra DK, Miller RA, Pence KA, et al. Small cell and non small cell lung cancer form metastasis on cellular 4D lung model. BMC Cancer. 2018 Apr 18;18(1):441.
  • Huang SX, Green MD, de Carvalho AT, et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc. 2015 Mar;10(3):413–425.
  • Chen HJ, Poran A, Unni AM, et al. Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med. 2019 Mar 4;216(3):674–687.
  • Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018 Oct 5;362(6410):91–95.
  • Gazdar AF, Minna JD. Small cell lung cancers made from scratch. J Exp Med. 2019 Mar 4;216(3):476–478.
  • Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 2008 Sep-Oct;1(2–3):78–82.
  • Gazdar AF, Carney DN, Nau MM, et al. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res. 1985 Jun;45(6):2924–2930.
  • Olsson L, Sorensen HR, Behnke O. Intratumoral phenotypic diversity of cloned human lung tumor cell lines and consequences for analyses with monoclonal antibodies. Cancer. 1984 Nov 1;54(9):1757–1765.
  • Chalishazar MD, Wait SJ, Huang F, et al. MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin Cancer Res. 2019 Aug 15;25(16):5107–5121.
  • Kuo TH, Kubota T, Watanabe M, et al. Orthotopic reconstitution of human small-cell lung carcinoma after intravenous transplantation in SCID mice. Anticancer Res. 1992 Sep-Oct;12(5):1407–1410.
  • Kuo TH, Kubota T, Watanabe M, et al. Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice: the importance of orthotopic models to obtain relevant drug evaluation data. Anticancer Res. 1993 May-Jun;13(3):627–630.
  • Taromi S, Kayser G, Catusse J, et al. CXCR4 antagonists suppress small cell lung cancer progression. Oncotarget. 2016 Dec 20;7(51):85185–85195.
  • Taromi S, Kayser G, von Elverfeldt D, et al. An orthotopic mouse model of small cell lung cancer reflects the clinical course in patients. Clin Exp Metastasis. 2016 Oct;33(7):651–660.
  • Sharma SK, Pourat J, Abdel-Atti D, et al. Noninvasive interrogation of dll3 expression in metastatic small cell lung cancer. Cancer Res. 2017 Jul 15;77(14):3931–3941.
  • Shtivelman E, Namikawa R. Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4661–4665.
  • Hanibuchi M, Yano S, Nishioka Y, et al. Therapeutic efficacy of mouse-human chimeric anti-ganglioside GM2 monoclonal antibody against multiple organ micrometastases of human lung cancer in NK cell-depleted SCID mice. Int J Cancer. 1998 Nov 9;78(4):480–485.
  • Miki T, Yano S, Hanibuchi M, et al. Bone metastasis model with multiorgan dissemination of human small-cell lung cancer (SBC-5) cells in natural killer cell-depleted SCID mice. Oncol Res. 2000;12(5):209–217.
  • Yano S, Zhang H, Hanibuchi M, et al. Combined therapy with a new bisphosphonate, minodronate (YM529), and chemotherapy for multiple organ metastases of small cell lung cancer cells in severe combined immunodeficient mice. Clin Cancer Res. 2003 Nov 1;9(14):5380–5385.
  • Zhang H, Yano S, Miki T, et al. A novel bisphosphonate minodronate (YM529) specifically inhibits osteolytic bone metastasis produced by human small-cell lung cancer cells in NK-cell depleted SCID mice. Clin Exp Metastasis. 2003;20(2):153–159.
  • Takeuchi S, Fukuda K, Arai S, et al. Organ-specific efficacy of HSP90 inhibitor in multiple-organ metastasis model of chemorefractory small cell lung cancer. Int J Cancer. 2016 Mar 1;138(5):1281–1289.
  • Isobe T, Onn A, Morgensztern D, et al. Evaluation of novel orthotopic nude mouse models for human small-cell lung cancer. J Thorac Oncol. 2013 Feb;8(2):140–146.
  • Sakamoto S, Inoue H, Ohba S, et al. New metastatic model of human small-cell lung cancer by orthotopic transplantation in mice. Cancer Sci. 2015 Apr;106(4):367–374.
  • Kellar A, Egan C, Morris D. Preclinical murine models for lung cancer: clinical trial applications. Biomed Res Int. 2015;2015:621324.
  • Carraresi L, Martinelli R, Vannoni A, et al. Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice. Cancer Lett. 2006 Jan 8;231(1):65–73.
  • Kellish P, Shabashvili D, Rahman MM, et al. Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. J Clin Invest. 2019 Apr 29;129(6):2279–2292.
  • Kersten K, de Visser KE, van Miltenburg MH, et al. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017 Feb;9(2):137–153.
  • Meuwissen R, Linn SC, Linnoila RI, et al. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell. 2003 Sep;4(3):181–189.
  • Schaffer BE, Park KS, Yiu G, et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 2010 May 15;70(10):3877–3883.
  • Gazdar AF, Savage TK, Johnson JE, et al. The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung. J Thorac Oncol. 2015 Apr;10(4):553–564.
  • McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell. 2014 Mar 13;156(6):1298–1311.
  • Borromeo MD, Savage TK, Kollipara RK, et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 2016 Aug 2;16(5):1259–1272.
  • Huijbers IJ, Bin Ali R, Pritchard C, et al. Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells. EMBO Mol Med. 2014 Feb;6(2):212–225.
  • Jahchan NS, Lim JS, Bola B, et al. Identification and targeting of long-term tumor-propagating cells in small cell lung cancer. Cell Rep. 2016 Jul 19;16(3):644–656.
  • Hamza B, Ng SR, Prakadan SM, et al. Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2232–2236.
  • Kim DW, Wu N, Kim YC, et al. Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer. Genes Dev. 2016 Jun 1;30(11):1289–1299.
  • Mollaoglu G, Guthrie MR, Bohm S, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017 Feb 13;31(2):270–285.
  • Zhang W, Girard L, Zhang YA, et al. Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res. 2018 Feb;7(1):32–49.
  • Dooley AL, Winslow MM, Chiang DY, et al. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev. 2011 Jul 15;25(14):1470–1475.
  • Denny SK, Yang D, Chuang CH, et al. Nfib Promotes metastasis through a widespread increase in chromatin accessibility. Cell. 2016 Jul 14;166(2):328–342.
  • Semenova EA, Kwon MC, Monkhorst K, et al. Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients. Cell Rep. 2016 Jul 19;16(3):631–643.
  • Wu N, Jia D, Ibrahim AH, et al. NFIB overexpression cooperates with Rb/p53 deletion to promote small cell lung cancer. Oncotarget. 2016 Sep 6;7(36):57514–57524.
  • Jia D, Augert A, Kim DW, et al. Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov. 2018 Nov;8(11):1422–1437.
  • Hellwig M, Merk DJ, Lutz B, et al. Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation. Cancer Gene Ther. 2019 May 9.
  • Bottger F, Semenova EA, Song JY, et al. Tumor heterogeneity underlies differential cisplatin sensitivity in mouse models of small-cell lung cancer. Cell Rep. 2019 Jun 11;27(11):3345–58 e4.
  • Ben-David U, Beroukhim R, Golub TR. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer. 2019 Feb;19(2):97–109.
  • Wang Z, Fu S, Zhao J, et al. Transbronchoscopic patient biopsy-derived xenografts as a preclinical model to explore chemorefractory-associated pathways and biomarkers for small-cell lung cancer. Cancer Lett. 2019 Jan;440-441:180–188.
  • Owonikoko TK, Zhang G, Kim HS, et al. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med. 2016 May 3;14(1):111.
  • Hodgkinson CL, Morrow CJ, Li Y, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014 Aug;20(8):897–903.
  • Lallo A, Frese KK, Morrow CJ, et al. The Combination of the PARP inhibitor olaparib and the WEE1 Inhibitor AZD1775 as a new therapeutic option for small cell lung cancer. Clin Cancer Res. 2018 Oct 15;24(20):5153–5164.
  • Potter DS, Galvin M, Brown S, et al. Inhibition of PI3K/BMX cell survival pathway sensitizes to BH3 mimetics in SCLC. Mol Cancer Ther. 2016 Jun;15(6):1248–1260.
  • Williamson SC, Metcalf RL, Trapani F, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016 Nov;9(7):13322.
  • Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015 Mar;54(2):120–132.
  • Malaney P, Nicosia SV, Dave V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 2014 Mar 1;344(1):1–12.
  • Lallo A, Schenk MW, Frese KK, et al. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res. 2017 Aug;6(4):397–408.
  • Blackhall F, Frese KK, Simpson K, et al. Will liquid biopsies improve outcomes for patients with small-cell lung cancer? Lancet Oncol. 2018 Sep;19(9):e470–e81.
  • DeBord LC, Pathak RR, Villaneuva M, et al. The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res. 2018;8(8):1642–1660.
  • Sommers SC, Sullivan BA, Warren S. Heterotransplantation of human cancer. III. Chorioallantoic membranes of embryonated eggs. Cancer Res. 1952;Dec;12(12):915–917.
  • Kaufman N, Kinney TD, Mason EJ, et al. Maintenance of human neoplasm on the chick chorioallantoic membrane. Am J Pathol. 1956 Mar-Apr;32(2):271–285.
  • Wan J, Chai H, Yu Z, et al. HIF-1alpha effects on angiogenic potential in human small cell lung carcinoma. J Exp Clin Cancer Res. 2011 Aug 15;30:77.
  • Bragelmann J, Bohm S, Guthrie MR, et al. Family matters: how MYC family oncogenes impact small cell lung cancer. Cell Cycle. 2017 Aug 18;16(16):1489–1498.
  • Du J, Yan L, Torres R, et al. Aurora A selective inhibitor LY3295668 leads to dominant mitotic arrest, apoptosis in cancer cells and shows potent preclinical antitumor efficacy. Mol Cancer Ther. 2019 Sep 17;18:2207–2219.
  • Kato F, Fiorentino FP, Alibes A, et al. MYCL is a target of a BET bromodomain inhibitor, JQ1, on growth suppression efficacy in small cell lung cancer cells. Oncotarget. 2016 Nov 22;7(47):77378–77388.
  • Lam LT, Lin X, Faivre EJ, et al. Vulnerability of small-cell lung cancer to apoptosis induced by the Combination of bet bromodomain proteins and bcl2 inhibitors. Mol Cancer Ther. 2017 Aug;16(8):1511–1520.
  • Lenhart R, Kirov S, Desilva H, et al. Sensitivity of small cell lung cancer to BET inhibition is mediated by regulation of ASCL1 gene expression. Mol Cancer Ther. 2015 Oct;14(10):2167–2174.
  • Riveiro ME, Astorgues-Xerri L, Vazquez R, et al. OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non-small cell and small cell lung cancer models harboring different oncogenic mutations. Oncotarget. 2016 Dec 20;7(51):84675–84687.
  • Wang H, Hong B, Li X, et al. JQ1 synergizes with the Bcl-2 inhibitor ABT-263 against MYCN-amplified small cell lung cancer. Oncotarget. 2017 Oct 17;8(49):86312–86324.
  • Foy V, Schenk MW, Baker K, et al. Targeting DNA damage in SCLC. Lung Cancer. 2017 Dec;114:12–22.
  • Oser MG, Fonseca R, Chakraborty AA, et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 2019 Feb;9(2):230–247.
  • Gong X, Du J, Parsons SH, et al. Aurora A Kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 2019 Feb;9(2):248–263.
  • Cardnell RJ, Li L, Sen T, et al. Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies. Oncotarget. 2017 Sep 26;8(43):73419–73432.
  • Leonetti A, Facchinetti F, Minari R, et al. Notch pathway in small-cell lung cancer: from preclinical evidence to therapeutic challenges. Cell Oncol (Dordr). 2019 Jun;42(3):261–273.
  • Furuta M, Sakakibara‐Konishi J, Kikuchi H, et al. Analysis of DLL3 and ASCL1 in surgically resected small cell lung cancer (HOT1702). The Oncologist. 2019;24(11):e1172–e1179.
  • Owen DH, Giffin MJ, Bailis JM, et al. DLL3: an emerging target in small cell lung cancer. J Hematol Oncol. 2019 Jun 18;12(1):61.
  • Saunders LR, Bankovich AJ, Anderson WC, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015 Aug 26;7(302):302ra136.
  • Morgensztern D, Besse B, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin Cancer Res. 2019 Dec 1;25(23):6958–6966.
  • Messaritakis I, Nikolaou M, Koinis F, et al. Characterization of DLL3-positive circulating tumor cells (CTCs) in patients with small cell lung cancer (SCLC) and evaluation of their clinical relevance during front-line treatment. Lung Cancer. 2019 Sep;135:33–39.
  • Augert A, Eastwood E, Ibrahim AH, et al. Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal. 2019 Feb 5;12:567.
  • Takagi S, Ishikawa Y, Mizutani A, et al. LSD1 inhibitor T-3775440 inhibits SCLC cell proliferation by disrupting lsd1 interactions with snag domain proteins INSM1 and GFI1B. Cancer Res. 2017 Sep 1;77(17):4652–4662.
  • Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015 Aug;14(8):561–584.
  • Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016 Apr;15(4):235–247.
  • Saleh K, Khalife-Saleh N, Kourie HR. Finally, after decades, immune checkpoint inhibitors dethroned the standard of care of small-cell lung cancer. Immunotherapy. 2019 Apr;11(6):457–460.
  • Paz-Ares L, Dvorkin M, Chen Y, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet. 2019 Nov 23;394(10212):1929–1939.
  • Ott PA, Elez E, Hiret S, et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J Clin Oncol. 2017 Dec 1;35(34):3823–3829.
  • Chung HC, Piha-Paul SA, Lopez-Martin J, et al. pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic small-cell lung cancer: results from the KEYNOTE-028 and KEYNOTE-158 Studies. J Thorac Oncol. 2019 Dec 20. pii: S1556-0864(19)33850-X.
  • Reguart N, Marin E, Remon J, et al. In search of the long-desired ‘copernican therapeutic revolution’ in small-cell lung cancer. Drugs. 2020 Jan 8;80:241–262.
  • Sen T, Rodriguez BL, Chen L, et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019 May;9(5):646–661.
  • Sen T, Della Corte CM, Milutinovic S, et al. Combination treatment of the oral CHK1 inhibitor, SRA737 and low dose gemcitabine, enhances the effect of PD-L1 blockade by modulating the immune microenvironment in small cell lung cancer. J Thorac Oncol. 2019 Dec 1;14(12):2152–2163..
  • Poirier JT, Gardner EE, Connis N, et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene. 2015 Nov 26;34(48):5869–5878.
  • Gardner EE, Lok BH, Schneeberger VE, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell. 2017 Feb 13;31(2):286–299.
  • Lok BH, Gardner EE, Schneeberger VE, et al. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with Temozolomide in small cell lung cancer. Clin Cancer Res. 2017 Jan 15;23(2):523–535.
  • Laird JH, Lok BH, Ma J, et al. Talazoparib is a potent radiosensitizer in small cell lung cancer cell lines and xenografts. Clin Cancer Res. 2018 Oct 15;24(20):5143–5152.
  • Pietanza MC, Waqar SN, Krug LM, et al. Randomized, double-blind, phase ii study of temozolomide in combination with either Veliparib or Placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol. 2018 Aug 10;36(23):2386–2394.
  • Kontogianni K, Nicholson AG, Butcher D, et al. CD56: a useful tool for the diagnosis of small cell lung carcinomas on biopsies with extensive crush artefact. J Clin Pathol. 2005 Sep;58(9):978–980.
  • Zheng G, Ettinger DS, Maleki Z. Utility of the quantitative Ki-67 proliferation index and CD56 together in the cytologic diagnosis of small cell lung carcinoma and other lung neuroendocrine tumors. Acta Cytol. 2013;57(3):281–290.
  • Whiteman KR, Johnson HA, Mayo MF, et al. Lorvotuzumab mertansine, a CD56-targeting antibody-drug conjugate with potent antitumor activity against small cell lung cancer in human xenograft models. MAbs. 2014 Mar-Apr;6(2):556–566.
  • Socinski MA, Kaye FJ, Spigel DR, et al. Phase 1/2 Study of the CD56-targeting antibody-drug conjugate Lorvotuzumab Mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease. Clin Lung Cancer. 2017 Jan;18(1):68–76 e2.
  • Yu L, Lu Y, Yao Y, et al. Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget. 2018 Jan 12;9(4):5197–5207.
  • Yu L, Yao Y, Wang Y, et al. Preparation and anti-cancer evaluation of promiximab-MMAE, an anti-CD56 antibody drug conjugate, in small cell lung cancer cell line xenograft models. J Drug Target. 2018 Dec;26(10):905–912.
  • Crossland DL, Denning WL, Ang S, et al. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene. 2018 Jul;37(27):3686–3697.
  • Zaman S, Jadid H, Denson AC, et al. Targeting Trop-2 in solid tumors: future prospects. Onco Targets Ther. 2019;12:1781–1790.
  • Wang J, Day R, Dong Y, et al. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers. Mol Cancer Ther. 2008 Feb;7(2):280–285.
  • Trerotola M, Cantanelli P, Guerra E, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013 Jan 10;32(2):222–233.
  • Cardillo TM, Govindan SV, Sharkey RM, et al. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res. 2011 May 15;17(10):3157–3169.
  • Cardillo TM, Govindan SV, Sharkey RM, et al. Sacituzumab Govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015 May 20;26(5):919–931.
  • Sahota S, Vahdat LT. Sacituzumab govitecan: an antibody-drug conjugate. Expert Opin Biol Ther. 2017 Aug;17(8):1027–1031.
  • Fenn KM, Kalinsky K. Sacituzumab govitecan: antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today (Barc). 2019 Sep;55(9):575–585.
  • Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019 Feb 21;380(8):741–751.
  • Gray JE, Heist RS, Starodub AN, et al. Therapy of small cell lung cancer (SCLC) with a Topoisomerase-I-inhibiting antibody-drug conjugate (ADC) targeting trop-2, sacituzumab govitecan. Clin Cancer Res. 2017 Oct 1;23(19):5711–5719.
  • Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer. Nat Rev Genet. 2019 Jul;20(7):404–416.
  • Balanis NG, Sheu KM, Esedebe FN, et al. Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell. 2019 Jul 8;36(1):17–34 e7.
  • Bregenzer ME, Horst EN, Mehta P, et al. Integrated cancer tissue engineering models for precision medicine. PLoS One. 2019;14(5):e0216564.
  • O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet. 2017 Oct;18(10):613–623.
  • Huang A, Garraway LA, Ashworth A, et al. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov. 2020 Jan;19(1):23–38.
  • Liu Y, Li Y, Liu S, et al. NK cells mediate synergistic antitumor effects of combined inhibition of HDAC6 and BET in a SCLC preclinical model. Cancer Res. 2018 Jul 1;78(13):3709–3717.
  • Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019 May 7;20:9.
  • Hellmann MD, Callahan MK, Awad MM, et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 2018 May 14;33(5):853–61 e4.
  • Ricciuti B, Kravets S, Dahlberg SE, et al. Use of targeted next generation sequencing to characterize tumor mutational burden and efficacy of immune checkpoint inhibition in small cell lung cancer. J Immunother Cancer. 2019 Mar 28;7(1):87.
  • Rosenthal R, Cadieux EL, Salgado R, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019 Mar;567(7749):479–485.
  • Dammert MA, Bragelmann J, Olsen RR, et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun. 2019 Aug 2;10(1):3485.
  • Yan LX, Liu YH, Li Z, et al. Prognostic value of delta-like protein 3 combined with thyroid transcription factor-1 in small-cell lung cancer. Oncol Lett. 2019 Sep;18(3):2254–2261.
  • Gardner EE, Connis N, Poirier JT, et al. Rapamycin rescues ABT-737 efficacy in small cell lung cancer. Cancer Res. 2014 May 15;74(10):2846–2856.
  • Borodovsky A, McQuiston TJ, Stetson D, et al. Generation of stable PDX derived cell lines using conditional reprogramming. Mol Cancer. 2017 Dec 6;16(1):177.
  • Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2019 Jun 7;364(6444):952–955.
  • Palechor-Ceron N, Krawczyk E, Dakic A, et al. conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells. 2019 Oct 27;8:11.
  • Chen Q, Wang J, Liu WN, et al. Cancer immunotherapies and humanized mouse drug testing platforms. Transl Oncol. 2019 Jul;12(7):987–995.
  • Olson B, Li Y, Lin Y, et al. Mouse models for cancer immunotherapy research. Cancer Discov. 2018 Nov;8(11):1358–1365.
  • Lampreht Tratar U, Horvat S, Cemazar M. Transgenic mouse models in cancer research. Front Oncol. 2018;8:268.
  • Pyo KH, Kim JH, Lee JM, et al. Promising preclinical platform for evaluation of immuno-oncology drugs using Hu-PBL-NSG lung cancer models. Lung Cancer. 2019 Jan;127:112–121.
  • Wang M, Yao LC, Cheng M, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. Faseb J. 2018 Mar;32(3):1537–1549.
  • Lin S, Huang G, Cheng L, et al. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs. 2018 Nov-Dec;10(8):1301–1311.
  • Almodovar K, Iams WT, Meador CB, et al. Longitudinal cell-free DNA analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse. J Thorac Oncol. 2018 Jan;13(1):112–123.
  • Wang Z, Duan J, Cai S, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol. 2019 May 1;5(5):696–702.
  • Nunes AS, Barros AS, Costa EC, et al. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019 Jan;116(1):206–226.
  • Drost J, Clevers Hl. Organoids in cancer research. Nat Rev Cancer 2018 Jul;18(7):407–18.
  • Dunker N, Jendrossek V. Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers (Basel). 2019 Oct 7;11(10).
  • Meder L, Schuldt P, Thelen M, Schmitt A, Dietlein F, Klein S, et al. Combined VEGF and PD-L1 Blockade Displays Synergistic Treatment Effects in an Autochthonous Mouse Model of Small Cell Lung Cancer. Cancer Res 2018 Aug 1;78(15):4270–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.