593
Views
24
CrossRef citations to date
0
Altmetric
Review

Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain

, , &
Pages 1009-1028 | Received 07 Jan 2020, Accepted 31 Jul 2020, Published online: 31 Aug 2020

References

  • Martin WR, Eades CG, Thompson J, et al. The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976;197(3):517–532.
  • Su T-P. Evidence for sigma opioid receptor: binding of [3H] SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther. 1982;223(2):284–290.
  • Vaupel DB. Naltrexone fails to antagonize the a effects of PCP and sskf 10,047 in the dog. Eur J Pharmacol. 1983;92:269–274.
  • Vignon J, Chicheportiche R, Chicheportiche M, et al. [3H] TCP: a new tool with high affinity for the PCP receptor in rat brain. Brain Res. 1983;280(1):194–197.
  • Wong EH, Kemp JA, Priestley T, et al. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Nat Acad Sci. 1986;83(18):7104–7108.
  • Su T-P, Wu XZ, Cone EJ, et al. Sigma compounds derived from phencyclidine: identification of PRE-084, a new, selective sigma ligand. J Pharmacol Exp Ther. 1991;259(2):543–550.
  • Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 1990;527(2):244–253.
  • Quirion R, Bowen WD, Itzhak Y, et al. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci. 1992;13:85–86.
  • Hanner M, Moebius FFFF, Flandorfer A, et al. Purification, molecular cloning and expression of the mammalian sigma1-binding site. Proc Nat Acad Sci. 1996;93(15):8072.
  • Kekuda R, Prasad PDPD, Fei Y-JY-J, et al. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1)*. Biochem Biophys Res Commun. 1996;229(2):553–558.
  • Seth P, Leibach FH, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun. 1997;241(2):535–540.
  • Schmidt HR, Zheng S, Gurpinar E, et al. Crystal structure of the human σ1 receptor. Nature. 2016;532:527.
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(1):296–303.
  • Bertoni M, Kiefer F, Biasini M, et al. Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology. Sci Rep. 2017;7(1):1–15.
  • Mishra AK, Mavlyutov T, Singh DR, et al. The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J. 2015;466:263–271.
  • Hong WC. Distinct regulation of σ1 receptor multimerization by its agonists and antagonists in transfected cells and rat liver membranes. J Pharmacol Exp Ther. 2020;373(2):290–301.
  • Gromek KA, Suchy FP, Meddaugh HR, et al. The oligomeric states of the purified sigma-1 receptor are stabilized by ligands. J Biol Chem. 2014;289(29):20333–20344.
  • Navarro G, Moreno E, Bonaventura J, et al. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PloS One. 2013;8:4.
  • Aguinaga D, Medrano M, Vega-Quiroga I, et al. Cocaine effects on dopaminergic transmission depend on a balance between sigma-1 and sigma-2 receptor expression. Front Mol Neurosci. 2018;11:17.
  • Schmidt HR, Betz RM, Dror RO, et al. Structural basis for σ 1 receptor ligand recognition. Nat Struct Mol Biol. 2018;25(10):981.
  • Bermack JE, Debonnel G. The role of sigma receptors in depression. J Pharmacol Sci. 2005;336:317–336.
  • Vilner BJ, de Costa BR, Bowen WD. Cytotoxic effects of sigma ligands: sigma receptor-mediated alterations in cellular morphology and viability. J Neurosci. 1995;15(1):117–134.
  • Hayashi T, Su TP. The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci. 2005;77(14):1612–1624.
  • Palmer CP, Mahen R, Schnell E, et al. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res. 2007;67(23):11166–11175.
  • Hayashi T, Su TP. Intracellular dynamics of σ-1 receptors (σ1 binding sites) in NG108-15 cells. J Pharmacol Exp Ther. 2003;306(2):726–733.
  • Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca 2 + signaling and cell survival. Cell. 2007;131(3):596–610.
  • Aydar E, Palmer CP, Klyachko VA, et al. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron. 2002;34(3):399–410.
  • Su TP, Hayashi T, Maurice T, et al. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci. 2010;31(12):557–566.
  • Brimson J, Brown C, Safrany S. Antagonists show GTP-sensitive high affinity binding to the sigma-1 receptor. Br J Pharmacol. 2011;164:772–780.
  • Sánchez-blázquez P, Rodríguez-muñoz M, Herrero-labrador R. The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neurosychopharmacol. 2014;17:1943–1955.
  • Vilner BJ, John CS, Bowen WD. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res. 1995;55(2):408–413.
  • Alon A, Schmidt HR, Wood MD, et al. Identification of the gene that codes for the σ2 receptor. Proc Nat Acad Sci. 2017.
  • de Costa BR, Bowen WD, Hellewell SB, et al. Synthesis and evaluation of optically pure [3H](+)pentazocine, a highly potent and selective radioligand for σ receptors. FEBS Lett. 1989;251(1–2):53–58.
  • Chu UB, Ruoho AE. Sigma receptor binding assays. Curr Protoc Pharmacol. 2015;71(1):1–34.
  • Abbas H, Borde P, Willars GB, et al. Hazards of using masking protocols when performing ligand binding assays: lessons from the sigma-1 and sigma-2 receptors. Front Pharmacol. 2020;11:309.
  • Sonnenschein C, Olea N, Pasanen M, et al. Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res. 1989;49(13):3474–3481.
  • Ralph JL, M-C O-C, Lareyre -J-J, et al. Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene. Environ Health Perspect. 2003;111(4):461–466.
  • Wetherill YB, Petre CE, Monk KR, et al. The xenoestrogen bisphenol a induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells 1 this work was supported by NIH training grant ES07250-13 (to YBW; environmental mutagenesis and Cancer) and NIH grant R01 CA93404-01 (to KEK). 1. Mol Cancer Ther. 2002;1(7):515–524.
  • Hayashi T, Maurice T, Su T-P. Ca2+ signaling via sigma1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther. 2000;293(3):788–798.
  • Brimson JM, Safrany ST, Qassam H, et al. Dipentylammonium binds to the sigma-1 receptor and protects against glutamate toxicity, attenuates dopamine toxicity and potentiates neurite outgrowth in various cultured cell lines. Neurotox Res. 2018;34(2):263–272.
  • Marrazzo A, Caraci F, Salinaro ET, et al. Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport. 2005;16(11):1223–1226.
  • Francardo V, Bez F, Wieloch T, et al. Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain. 2014;137(7):1998–2014.
  • Maurice T, Hiramatsu M, Itoh J, et al. Behavioral evidence for a modulating role of σ ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Res. 1994;647(1):44–56.
  • Maurice T, Lockhart BP. Neuroprotective and anti-amnesic potentials of sigma (σ) receptor ligands. Prog Neuro Psychopharmacol Biol Psychiatry. 1997;21(1):69–102.
  • Maurice T, Urani A, Phan V-L, et al. The interaction between neuroactive steroids and the σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev. 2001;37(1–3):116–132.
  • Pande AC, Genève J, Scherrer B, et al. A placebo-controlled trial of igmesine in the treatment of major depression. Eur Neuropsychopharmacol. 1999;9:138.
  • Reilmann R, McGarry A, Grachev ID, et al. Safety and efficacy of pridopidine in patients with Huntington’s disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol. 2019;18(2):165–176.
  • Hayashi T, Su TP. Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci U S A. 2001;98(2):491–496.
  • Watras J, Ehrlich BE. Bell-shaped calcium-response curves of lns (l, 4, 5) P 3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991;351(6329):751–754.
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today. 2004;9(15):641–651.
  • Frishman WH, Zuckerman AL. Amlodipine/atorvastatin: the first cross risk factor polypill for the prevention and treatment of cardiovascular disease. Expert Rev Cardiovasc Ther. 2004;2(5):675–681.
  • Chung KF, Adcock IM. Combination therapy of long-acting β 2-adrenoceptor agonists and corticosteroids for asthma. Treat Respir Med. 2004;3(5):279–289.
  • Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3(4):353–359.
  • Baldessarini RJ, Frankenburg FR. Clozapine: a novel antipsychotic agent. N Engl J Med. 1991;324(11):746–754.
  • Bolognesi ML, Banzi R, Bartolini M, et al. Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer’s disease. J Med Chem. 2007;50(20):4882–4897.
  • Weinstock M, Bejar C, Wang R-H, et al. Advances in Research on Neurodegeneration. In: TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. Vienna: Springer, 2000. 157–169.
  • Sagi Y, Weinstock M, Youdim MB. Attenuation of MPTPinduced dopaminergic neurotoxicity by TV3326, a cholinesterasemonoamine oxidase inhibitor. J Neurochem. 2003;86(2):290–297.
  • Krieglstein J, Lippert K, Pöch G. Apparent independent action of nimodipine and glutamate antagonists to protect cultured neurons against glutamate-induced damage. Neuropharmacology. 1996;35(12):1737–1742.
  • Cassel JC, Jeltsch H. Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience. 1995;69(1):1–41.
  • Buccafusco JJ, Terry AV. Multiple central nervous system targets for eliciting beneficial effects on memory and cognition. J Pharmacol Exp Ther. 2000;295(2):438–446.
  • Ryskamp DA, Korban S, Zhemkov V, et al. Neuronal Sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front Neurosci. 2019;13:862.
  • Pabba M, Wong AY, Ahlskog N, et al. NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci. 2014;34(34):11325–11338.
  • Kourrich S, Su T-P, Fujimoto M, et al. The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci. 2012;35(12):1–10.
  • Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol. 2012;682(1–3):12–20.
  • Nishimura T, Ishima T, Iyo M, et al. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS One. 2008;3(7):e2558–e2558.
  • Ishima T, Nishimura T, Iyo M, et al. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuro Psychopharmacol Biol Psychiatry. 2008;32(7):1656–1659.
  • Takebayashi M, Hayashi T, Su T-P. Nerve growth factor-induced neurite sprouting in PC12 cells involves ς-1 receptors: implications for antidepressants. J Pharmacol Exp Ther. 2002;303(3):1227–1237.
  • Terada K, Migita K, Matsushima Y, et al. Cholinesterase inhibitor rivastigmine enhances nerve growth factor-induced neurite outgrowth in PC12 cells via sigma-1 and sigma-2 receptors. PLoS ONE. 2018;13(12):1–16.
  • Oda T, Kume T, Katsuki H, et al. Donepezil potentiates nerve growth factor-induced neurite outgrowth in PC12 cells. J Pharmacol Sci. 2007;104(4):349–354.
  • Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol. 2014;727:167–173.
  • Ruscher K, Shamloo M, Rickhag M, et al. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain. 2011;134(3):732–746.
  • Penas C, Pascual-Font A, Mancuso R, et al. Sigma receptor agonist 2-(4-morpholinethyl) 1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma. 2011;28(5):831–840.
  • Segal R, Pomeroy S, Stiles C. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci. 1995;15(7):4970–4981.
  • McGleenon B, Dynan K, Passmore A. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol. 1999;48(4):471.
  • Salloway S, Sperling R, Gilman S, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2009;73(24):2061–2070.
  • Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–333.
  • Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–321.
  • Gundlach AL, Largent BL, Snyder SH. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+) 3H-3-(3-hydroxyphenyl)-N-(1-propyl) piperidine. J Neurosci. 1986;6(6):1757–1770.
  • Kawamura K, Kubota K, Kobayashi T, et al. Evaluation of [11C]SA5845 and [11C]SA4503 for imaging of sigma receptors in tumors by animal PET. Ann Nucl Med. 2005;19(8):701–709.
  • Kawamura K, Kimura Y, Tsukada H, et al. An increase of sigma1 receptors in the aged monkey brain. Neurobiol Aging. 2003;24(5):745–752.
  • Mishina M, Ohyama M, Ishii K, et al. Low density of sigma 1 receptors in early Alzheimer’s disease. Ann Nucl Med. 2008;22(3):151.
  • Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.
  • Lahmy V, Long R, Morin D, et al. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25–35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Front Cell Neurosci. 2015;8:463.
  • Meunier J, Ieni J, Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol. 2006;149(8):998–1012.
  • Cacabelos R. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat. 2007;3(3):303–333.
  • Maurice T. Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments. Behav Brain Res. 2016;296:270–278.
  • Nguyen L, Lucke-Wold BP, Mookerjee SA, et al. Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci. 2015;127(1):17–29.
  • Ablordeppey SY, Fischer JB, Glennon RA. Is a Nitrogen Atom an Important Pharmacophoric Element in Sigma Ligand Binding? Bioorg Med Chem. 2000;8:2105–2111.
  • Glennon RA, Ablordeppey SY, Ismaiel AM, et al. Structural Features Important for sigma1 Receptor Binding. J Med Chem. 1994;37(8):1214–1219.
  • Pascual R, Almansa C, Plata-Salamán C, et al. A new pharmacophore model for the design of sigma-1 ligands validated on a large experimental dataset. Front Pharmacol. 2019;10:519.
  • Yano T, Tanabe H, Kobayashi K, et al. Sigma-1 receptor is a molecular target for novel neuroprotectant T-817MA. Alzheimer’s Dementia. 2015;11(7):P861.
  • Abe H, Jitsuki S, Nakajima W, et al. CRMP2-binding compound, edonerpic maleate, accelerates motor function recovery from brain damage. Science. 2018;360(6384):50–57.
  • Uehara T, Sumiyoshi T, Kurachi M. New pharmacotherapy targeting cognitive dysfunction of schizophrenia via modulation of GABA neuronal function. Curr Neuropharmacol. 2015;13(6):793–801.
  • Uehara T, Sumiyoshi T, Hattori H, et al. T-817MA, a novel neurotrophic agent, ameliorates loss of GABAergic parvalbumin-positive neurons and sensorimotor gating deficits in rats transiently exposed to MK-801 in the neonatal period. J Psychiatr Res. 2012;46(5):622–629.
  • Uehara T, Sumiyoshi T, Seo T, et al. T-817MA, but not Haloperidol and Risperidone, restores parvalbumin-positive γ-aminobutyric acid neurons in the prefrontal cortex and hippocampus of rats transiently exposed to MK-801 at the neonatal period. ISRN Psychiatry. 2012;2012:1–8. DOI:10.5402/2012/947149
  • Takamura Y, Ono K, Matsumoto J, et al. Effects of the neurotrophic agent T-817MA on oligomeric amyloid-β–induced deficits in long-term potentiation in the hippocampal CA1 subfield. Neurobiol Aging. 2014;35(3):532–536.
  • Kimura T, Hong Nguyen PT, Ho SA, et al. T817MA, a neurotrophic agent, ameliorates the deficits in adult neurogenesis and spatial memory in rats infused icv with amyloidβ peptide. Br J Pharmacol. 2009;157(3):451–463.
  • Nguyen PTH, Kimura T, Ho SA, et al. Ameliorative effects of a neuroprotective agent, T817MA, on place learning deficits induced by continuous infusion of amyloidβ peptide (1–40) in rats. Hippocampus. 2007;17(6):443–455.
  • Moreno H, Choi S, Yu E, et al. Blocking effects of human tau on squid giant synapse transmission and its prevention by T-817 MA. Front Synaptic Neurosci. 2011;3:3.
  • Fukushima T, Nakamura A, Iwakami N, et al. T-817MA, a neuroprotective agent, attenuates the motor and cognitive impairments associated with neuronal degeneration in P301L tau transgenic mice. Biochem Biophys Res Commun. 2011;407(4):730–734.
  • Schneider LS, Thomas RG, Hendrix S, et al. Safety and efficacy of edonerpic maleate for patients with mild to moderate alzheimer disease: a phase 2 randomized clinical trial. JAMA Neurol. 2019;76(11):1330–1339.
  • Schneider L, Porsteinsson A, Farlow M, et al. The neuroprotective and neurotrophic agent T-817MA for Alzheimer’s disease: randomized, double-blind, placebo-controlled proof-of-concept trial outcomes. Alzheimer’s Dementia. 2013;9(4):P530–P531.
  • Sahlholm K, Sijbesma JWA, Maas B, et al. Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology (Berl). 2015;232(18):3443–3453.
  • Johnston TH, Geva M, Steiner L, et al. Pridopidine, a clinicready compound, reduces 3, 4dihydroxyphenylalanineinduced dyskinesia in Parkinsonian macaques. Mov Disord. 2019;34(5):708–716.
  • Ryskamp D, Wu L, Wu J, et al. Pridopidine stabilizes mushroom spines in mouse models of Alzheimer’s disease by acting on the sigma-1 receptor. Neurobiol Dis. 2019;124:489–504.
  • Ryskamp D, Zhemkov V, Bezprozvanny I. Mutational analysis of sigma-1 receptor function in synaptic spines. Front Neurosci. 2019;13:1012.
  • Lahmy V, Meunier J, Malmström S, et al. Blockade of Tau hyperphosphorylation and Aβ 1–42 generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ 1 receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2013;38(9):1706.
  • Christ MG, Huesmann H, Nagel H, et al. Sigma-1 receptor activation induces autophagy and increases proteostasis capacity in vitro and in vivo. Cells. 2019;8(3):211.
  • Hall H, Iulita MF, Gubert P, et al. AF710B, an M1/sigma-1 receptor agonist with long-lasting disease-modifying properties in a transgenic rat model of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14(6):811–823.
  • Neumeister KL, Riepe MW. Synergistic effects of antidementia drugs on spatial learning and recall in the APP23 transgenic mouse model of alzheimer’s disease. J Alzheimers Dis. 2012;30(2):245–251.
  • Wallace DR, Mactutus CF, Booze RM. Sigma binding sites identified by [3H] DTG are elevated in aged Fischer344× Brown Norway (F1) rats. Synapse. 2000;35(4):311–313.
  • Norbury R, Travis MJ, Erlandsson K, et al. In vivo imaging of muscarinic receptors in the aging female brain with (R, R)[123I]-I-QNB and single photon emission tomography. Exp Gerontol. 2005;40(3):137–145.
  • Inoue M, Suhara T, Sudo Y, et al. Age-related reduction of extrastriatal dopamine D2 receptor measured by PET. Life Sci. 2001;69(9):1079–1084.
  • Sheline YI, Mintun MA, Moerlein SM, et al. Greater loss of 5-HT2A receptors in midlife than in late life. Am J Psychiatry. 2002;159(3):430–435.
  • Meltzer CC, Smith G, Price JC, et al. Reduced binding of [18F] altanserin to serotonin type 2A receptors in aging: persistence of effect after partial volume correction. Brain Res. 1998;813(1):167–171.
  • Goldstein SR, Matsumoto RR, Thompson TL, et al. Motor effects of two sigma ligands mediated by nigrostriatal dopamine neurons. Synapse. 1989;4(3):254–258.
  • Gudelsky GA. Biphasic effect of sigma receptor ligands on the extracellular concentration of dopamine in the striatum of the rat. J Neural Transm. 1999;106(9–10):849–856.
  • Kobayashi T, Matsuno K, Murai M, et al. σ 1 receptor subtype is involved in the facilitation of cortical dopaminergic transmission in the rat brain. Neurochem Res. 1997;22(9):1105–1109.
  • Kobayashi T, Matsuno K, Mita S. Regional differences of the effect of σ receptor ligands on the acetylcholine release in the rat brain. J Neural Transm. 1996;103(6):661–669.
  • Matsuno K, Senda T, Kobayashi T, et al. Involvement of σ1 receptor in (+)-N-allylnormetazocine-stimulated hippocampal cholinergic functions in rats. Brain Res. 1995;690(2):200–206.
  • Ault DT, Werling LL. Differential modulation of NMDA-stimulated [3H] dopamine release from rat striatum by neuropeptide Y and σ receptor ligands. Brain Res. 1997;760(1–2):210–217.
  • Maurice T, Privat A. SA4503, a novel cognitive enhancer with σ1 receptor agonist properties, facilitates NMDA receptor-dependent learning in mice. Eur J Pharmacol. 1997;328(1):9–18.
  • Pedigo JNW. Neurotransmitter receptor plasticity in aging. Life Sci. 1994;55(25–26):1985–1991.
  • Monnet FP, Mahé V, Robel P, et al. Neurosteroids, via sigma receptors, modulate the [3H] norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Nat Acad Sci. 1995;92(9):3774–3778.
  • Fontanilla D, Johannessen M, Hajipour AR, et al. The hallucinogen N, N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science. 2009;323(5916):934–937.
  • Brailoiu E, Chakraborty S, Brailoiu GC, et al. Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors. Cell Rep. 2019;26(2):330–337.
  • Labrie F, Bélanger A, Cusan L, et al. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab. 1997;82(8):2403–2409.
  • Nafziger AN, Bowlin SJ, Jenkins PL, et al. Longitudinal changes in dehydroepiandrosterone concentrations in men and women. Transl Res. 1998;131(4):316–323.
  • Orentreich N, Brind JL, Rizer RL, et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59(3):551–555.
  • Ravaglia G, Forti P, Maioli F, et al. The relationship of dehydroepiandrosterone sulfate (DHEAS) to endocrine-metabolic parameters and functional status in the oldest-old. Results from an Italian study on healthy free-living over-ninety-year-olds. J Clin Endocrinol Metab. 1996;81(3):1173–1178.
  • Cohen BM, Renshaw PF, Stoll AL, et al. Decreased brain choline uptake in older adults: an in vivo proton magnetic resonance spectroscopy study. Jama. 1995;274(11):902–907.
  • Cummings JL, Lyketsos CG, Peskind ER, et al. Effect of dextromethorphan-quinidine on agitation in patients with Alzheimer disease dementia: a randomized clinical trial. Jama. 2015;314(12):1242–1254.
  • Avanir. Avanir pharmaceuticals announces initiation of Phase III trial of AVP-786 for agitation in patients with Alzheimer’s disease. 2015.
  • Peeters M, Romieu P, Maurice T, et al. Involvement of the sigma1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci. 2004;19(8):2212–2220.
  • Mishina M, Ishiwata K, Ishii K, et al. Function of sigma 1 receptors in Parkinson’s disease. Acta Neurol Scand. 2005;112(2):103–107.
  • Hong J, Wang L, Zhang T, et al. Sigma-1 receptor knockout increases α-synuclein aggregation and phosphorylation with loss of dopaminergic neurons in substantia nigra. Neurobiol Aging. 2017;59:171–183.
  • Mori T, Hayashi T, Su TP. Compromising σ-1 receptors at the endoplasmic reticulum render cytotoxicity to physiologically relevant concentrations of dopamine in a nuclear factor-κB/Bcl-2-dependent mechanism: potential relevance to Parkinson’s disease. J Pharmacol Exp Ther. 2012;341(3):663–671.
  • Francardo V, Geva M, Bez F, et al. Pridopidine Induces Functional Neurorestoration Via the Sigma-1 Receptor in a Mouse Model of Parkinson’s Disease. Neurotherapeutics. 2019;16(2):465–479.
  • AlSaif A, AlMohanna F, Bohlega S. A mutation in sigma1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011;70(6):913–919.
  • Watanabe S, Ilieva H, Tamada H, et al. Mitochondriaassociated membrane collapse is a common pathomechanism in SIGMAR 1and SOD 1linked ALS. EMBO Mol Med. 2016;8(12):1421–1437.
  • Almendra L, Laranjeira F, Fernández-Marmiesse A, et al. SIGMAR1 gene mutation causing Distal Hereditary Motor Neuropathy in a Portuguese family. Acta Myologica. 2018;37(1):2–4.
  • FUS S Compound heterozygote mutations in the SIGMAR1 gene in an oldest-old patient with amyotrophic lateral sclerosis. 2018.
  • Wong AY, Hristova E, Ahlskog N, et al. Aberrant subcellular dynamics of sigma-1 receptor mutants underlying neuromuscular diseases. Mol Pharmacol. 2016;90(3):238–253.
  • Dreser A, Vollrath JT, Sechi A, et al. The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ. 2017;24(10):1655–1671.
  • Prause J, Goswami A, Katona I, et al. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22(8):1581–1600.
  • Mavlyutov TA, Epstein ML, Verbny YI, et al. Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience. 2013;240:129–134.
  • Mavlyutov TA, Epstein ML, Andersen KA, et al. The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience. 2010;167(2):247–255.
  • Martina M, Turcotte MEB, Halman S, et al. The sigma1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol. 2007;578(1):143–157.
  • Balasuriya D, D’Sa L, Talker R, et al. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF®). J Biol Chem. 2014;289(46):32353–32363.
  • Mavlyutov TA, Guo L-W, Epstein ML, et al. Role of the sigma-1 receptor in amyotrophic lateral sclerosis (ALS). J Pharmacol Sci. 2015;127(1):10–16.
  • Peviani M, Salvaneschi E, Bontempi L, et al. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis. 2014;62:218–232.
  • Ionescu A, Gradus T, Altman T, et al. Targeting the sigma-1 receptor via pridopidine ameliorates central features of ALS pathology in a SOD1G93A model. Cell Death Dis. 2019;10:3.
  • Ishima T, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PloS One. 2012;7(5):e37989–e37989.
  • Guzmán-Lenis MS, Navarro X, Casas C. Selective sigma receptor agonist 2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons. Neuroscience. 2009;162(1):31–38.
  • Taylor CP, Traynelis SF, Siffert J, et al. Pharmacology of dextromethorphan: relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther. 2016;164:170–182.
  • de Lera Ruiz M, Kraus RL. Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem. 2015;58(18):7093–7118.
  • Smith R, Pioro E, Myers K, et al. Enhanced bulbar function in amyotrophic lateral sclerosis: the Nuedexta treatment trial. Neurotherapeutics. 2017;14(3):762–772.
  • Brooks BR, Crumpacker D, Fellus J, et al. PRISM: a novel research tool to assess the prevalence of pseudobulbar affect symptoms across neurological conditions. PLoS One. 2013;8:8.
  • Thakore NJ, Pioro EP. Laughter, crying and sadness in ALS. J Neurol Neurosurg Psychiatry. 2017;88(10):825–831.
  • Pioro EP, Brooks BR, Cummings J, et al. Dextromethorphan plus ultra LowDose quinidine reduces pseudobulbar affect. Ann Neurol. 2010;68(5):693–702.
  • McLean S, Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in guinea-pig brain. Neuroscience. 1988;25(1):259–269.
  • Tortella FC, Pellicano M, Bowery NG. Dextromethorphan and neuromodulation: old drug coughs up new activities. Trends Pharmacol Sci. 1989;10(12):501–507.
  • Musacchio J, Klein M, Canoll PD. Dextromethorphan and sigma ligands: common sites but diverse effects. Life Sci. 1989;45(19):1721–1732.
  • Compston A, Coles A. Multiple sclerosis.[Published erratum appears in 2002 Lancet 360: 648.]. Lancet. 2002;359:1221–1231.
  • Rajda C, Pukoli D, Bende Z, et al. Excitotoxins, mitochondrial and redox disturbances in multiple sclerosis. Int J Mol Sci. 2017;18(2):353.
  • Hayashi T, Su T-P. Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Nat Acad Sci. 2004;101(41):14949–14954.
  • Demerens C, Stankoff B, Zalc B, et al. Eliprodil stimulates CNS myelination: new prospects for multiple sclerosis? Neurology. 1999;52(2):346.
  • Lisak RP, Nedelkoska L, Benjamins JA. Effects of dextromethorphan on glial cell function: proliferation, maturation, and protection from cytotoxic molecules. Glia. 2014;62(5):751–762.
  • Oxombre B, LeeChang C, Duhamel A, et al. Highaffinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis. Br J Pharmacol. 2015;172(7):1769–1782.
  • Schaffar G, Breuer P, Boteva R, et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell. 2004;15(1):95–105.
  • Martinez-Vicente M, Talloczy Z, Wong E, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567.
  • Mochel F, Haller RG. Energy deficit in Huntington disease: why it matters. J Clin Invest. 2011;121(2):493–499.
  • Miki Y, Tanji K, Mori F, et al. Sigma-1 receptor is involved in degradation of intranuclear inclusions in a cellular model of Huntington’s disease. Neurobiol Dis. 2015;74:25–31.
  • Hyrskyluoto A, Pulli I, Törnqvist K, et al. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κ B pathway. Cell Death Dis. 2013;4(5):e646–e646.
  • Ryskamp D, Wu J, Geva M, et al. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis. 2017;97:46–59.
  • Garcia-Miralles M, Geva M, Tan JY, et al. Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice. JCI Insight. 2017;2:23.
  • Nguyen KQ, Rymar VV, Sadikot AF. Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of Huntington’s disease. Front Cell Neurosci. 2016;10:37.
  • Kusko R, Dreymann J, Ross J, et al. Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene expression and activates neuroprotective pathways in the YAC128 HD mouse. Mol Neurodegener. 2018;13(1):25.
  • Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci. 2010;30(44):14708–14718.
  • Kikuchi-Utsumi K, Nakaki T. Chronic treatment with a selective ligand for the sigma-1 receptor chaperone, SA4503, up-regulates BDNF protein levels in the rat hippocampus. Neurosci Lett. 2008;440(1):19–22.
  • Yagasaki Y, Numakawa T, Kumamaru E, et al. Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-induced signaling for glutamate release. J Biol Chem. 2006;281(18):12941–12949.
  • Fujimoto M, Hayashi T, Urfer R, et al. Sigma1 receptor chaperones regulate the secretion of brainderived neurotrophic factor. Synapse. 2012;66(7):630–639.
  • Geva M, Kusko R, Soares H, et al. Pridopidine activates neuroprotective pathways impaired in Huntington Disease. Hum Mol Genet. 2016;25(18):3975–3987.
  • Investigators HSGH. A randomized, doubleblind, placebocontrolled trial of pridopidine in Huntington’s disease. Mov Disord. 2013;28(10):1407–1415.
  • De Yebenes JG, Landwehrmeyer B, Squitieri F, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10(12):1049–1057.
  • McGarry A, Auinger P, Kieburtz K, et al. Additional Safety and Exploratory Efficacy Data at 48 and 60 Months from Open-HART, an Open-Label Extension Study of Pridopidine in Huntington Disease. J Huntington’s Dis. 2020;9(2):173–184.
  • Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron. 2002 Mar 28;34(1):13–25.
  • Stahl SM. Antidepressant treatment of psychotic major depression: potential role of the σ receptor. CNS Spectr. 2005;10(4):319–323.
  • Hyman SE, Nestler EJ. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry. 1996;153(2):151.
  • Itzhak Y. Multiple Affinity Binding States of the a Receptor: agents Effect of GTP-Binding Protein-modifying agents. Mol Pharmacol. 1989;36(4):512–517.
  • Narita N, Hashimoto K, Tomitaka S, et al. Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol. 1996;307(1):117–119.
  • Shirayama Y, Nishikawa T, Umino A, et al. p-Chlorophenylalanine-reversible reduction of σ binding sites by chronic imipramine treatment in rat brain. Eur J Pharmacol. 1993;237(1):117–126.
  • Urani A, Romieu P, Roman FJ, et al. Enhanced antidepressant efficacy of sigma1 receptor agonists in rats after chronic intracerebroventricular infusion of beta-amyloid-(1-40) protein. Eur J Pharmacol. 2004;486(2):151–161.
  • Matsuno K, Kobayashi T, Tanaka MK, et al. σ1 Receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test. Eur J Pharmacol. 1996;312(3):267–271.
  • Urani A, Roman FJ, Phan V-L, et al. The Antidepressant-Like Effect Induced by ς1-Receptor Agonists and Neuroactive Steroids in Mice Submitted to the Forced Swimming Test. J Pharmacol Exp Ther. 2001;298(3):1269–1279.
  • Ukai M, Maeda H, Nanya Y, et al. Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav. 1998;61(3):247–252.
  • Sabino V, Cottone P, Parylak SL, et al. Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res. 2009;198(2):472–476.
  • Itzhak Y, Kassim CO. Clorgyline displays high affinity for sigma binding sites in C57BL/6 mouse brain. Eur J Pharmacol. 1990;176(1):107.
  • Kulkarni SK, Dhir A. On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol. 2008;589(1–3):163–172.
  • Wang J, Mack AL, Coop A, et al. Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol. 2007;17(11):708–716.
  • Brimson JM, Akula KK, Abbas H, et al. Simple ammonium salts acting on sigma-1 receptors yield potential treatments for cancer and depression. Sci Rep. 2020;10(1):9251.
  • Bermack JE, Debonnel G. Modulation of serotonergic neurotransmission by shortand longterm treatments with sigma ligands. Br J Pharmacol. 2001;134(3):691–699.
  • Roman FJ, Pascaud X, Martin B, et al. JO 1784, a potent and selective ligand for rat and mouse brain σsites. J Pharm Pharmacol. 1990;42(6):439–440.
  • Müller WE, Siebert B, Holoubek G, et al. Neuropharmacology of the anxiolytic drug opripramol, a sigma site ligand. Pharmacopsychiatry. 2004;37(S 3):189–197.
  • Volz HP, Stoll KD. Clinical trials with sigma ligands. Pharmacopsychiatry. 2004;37(S 3):214–220.
  • Urani A, Romieu P, Portales-Casamar E, et al. The antidepressant-like effect induced by the sigma 1 (σ 1) receptor agonist igmesine involves modulation of intracellular calcium mobilization. Psychopharmacology (Berl). 2002;163(1):26–35.
  • Dhir A, Kulkarni SK. Involvement of sigma-1 receptor modulation in the antidepressant action of venlafaxine. Neurosci Lett. 2007;420(3):204–208.
  • Schatzberg AF. New approaches to managing psychotic depression. J Clin Psychiatry. 2003;64(1):19–23.
  • Gatti F, Bellini L, Gasperini M, et al. Fluvoxamine alone in the treatment of delusional depression. Am J Psychiatry. 1996;153(3):414.
  • Hirschfeld RMA. Efficacy of SSRIs and newer antidepressants in severe depression: comparison with TCAs. J Clin Psychiatry. 1999;60(5):326–335.
  • Zanardi R, Franchini L, Gasperini M, et al. Faster onset of action of fluvoxamine in combination with pindolol in the treatment of delusional depression: a controlled study. J Clin Psychopharmacol. 1998;18(6):441–446.
  • Zanardi R, Franchini L, Gasperini M, et al. Double-blind controlled trial of sertraline versus paroxetine in the treatment of delusional depression. Am J Psychiatry. 1996;153(12):1631.
  • Hindmarch I, Hashimoto K. Cognition and depression: the effects of fluvoxamine, a sigma1 receptor agonist, reconsidered. Psychopharmacology. 2010;25(3):193–200.
  • Yoshida H. ER stress and diseases. Febs J. 2007;274(3):630–658.
  • Hoozemans JJM, Veerhuis R, Van Haastert ES, et al. The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. 2005;110(2):165–172.
  • Katayama T, Imaizumi K, Manabe T, et al. Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat. 2004;28(1–2):67–78.
  • Unterberger U, Höftberger R, Gelpi E, et al. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol. 2006;65(4):348–357.
  • Kakiuchi C, Ishiwata M, Kametani M, et al. Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol. 2005;8(4):515–522.
  • Czéh B, Simon M, Schmelting B, et al. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology. 2006;31(8):1616.
  • Hajszan T, MacLusky NJ, Leranth C. Shortterm treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci. 2005;21(5):1299–1303.
  • Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry. 2004;56(8):570–580.
  • Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology. 2003;28(9):1562.
  • Tsai SY, Hayashi T, Harvey BK, et al. Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1•GTP pathway. Proc Nat Acad Sci. 2009;106(52):1–6.
  • Molteni R, Calabrese F, Bedogni F, et al. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol. 2006;9(3):307–317.
  • Russo-Neustadt AA, Alejandre H, Garcia C, et al. Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology. 2004;29(12):2189–2199.
  • Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72(1):609–642.
  • Ito K, Hirooka Y, Matsukawa R, et al. Decreased brain sigma-1 receptor contributes to the relationship between heart failure and depression. Cardiovasc Res. 2012;93(1):33–40.
  • Stahl SM, Pradko JF, Haight BR, et al. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry. 2004;6(4):159.
  • Dhir A, Kulkarni S. Possible involvement of sigma1 receptors in the antiimmobility action of bupropion, a dopamine reuptake inhibitor. Fundam Clin Pharmacol. 2008;22(4):387–394.
  • Anderson A, Iosifescu DV, Jacobson M, et al. Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double-blind, active-controlled trial. W43. ASCP Annual Meeting; 2019 May 18–22. San Francisco, CA.
  • Matsumoto RR. σ Receptors: historical perspective and background. Boston, MA: Springer; 2007. p. 1–23.
  • Gebreselassie D, Bowen WD. Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol. 2004;493(1–3):19–28.
  • Zeng C, Vangveravong S, Xu J, et al. Subcellular localization of sigma-2 receptors in breast cancer cells using two-photon and confocal microscopy. Cancer Res. 2007;67(14):6708–6716.
  • Xu J, Zeng C, Chu W, et al. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun. 2011;2:380.
  • Vilner BJ, Bowen WD. Modulation of cellular calcium by sigma-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells. J Pharmacol Exp Ther. 2000;292(3):900–911.
  • Wilke RA, Mehta RP, Lupardus PJ, et al. Sigma receptor photolabeling and sigma receptor-mediated modulation of potassium channels in tumor cells. J Biol Chem. 1999;274(26):18387–18392.
  • Leitner ML, Hohmann AG, Patrick SL, et al. Regional variation in the ratio of σ1 to σ2 binding in rat brain. Eur J Pharmacol. 1994;259(1):65–69.
  • Hellewell SB, Bruce A, Feinstein G, et al. Rat liver and kidney contain high densities of σ1 and σ2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol. 1994;268(1):9–18.
  • Geldenhuys WJ, Van der Schyf CJ. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin Drug Discov. 2013;8(2):115–129.
  • Zeng C, Rothfuss JM, Zhang J, et al. Functional assays to define agonists and antagonists of the sigma-2 receptor. Anal Biochem. 2014;448:68–74.
  • Johannessen M, Fontanilla D, Mavlyutov T, et al. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels. Am J Physiol Cell Physiol. 2011;300(2):C328–C337.
  • Riad A, Zeng C, Weng -C-C, et al. Sigma-2 Receptor/TMEM97 and PGRMC-1 Increase the Rate of Internalization of LDL by LDL Receptor through the Formation of a Ternary Complex. Sci Rep. 2018;8(1):16845.
  • Izzo NJ, Xu J, Zeng C, et al. Alzheimer’s therapeutics targeting amyloid beta 1–42 oligomers II: sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PloS One. 2014;9(11):e111899–e111899.
  • Yi B, Sahn JJ, Ardestani PM, et al. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer’s disease. J Neurochem. 2017;140(4):561–575.
  • Blass BE, Rogers JP. The sigma-2 (σ-2) receptor: a review of recent patent applications: 2013–2018. Expert Opin Ther Pat. 2018;28(9):655–663.
  • Sanchez C, Arnt J, Costall B, et al. The selective ς2-Ligand Lu 28-179 has potent anxiolytic-like effects in Rodents. J Pharmacol Exp Ther. 1997;283(3):1323–1332.
  • Sanchez C, Papp M. The selective σ2 ligand Lu 28-179 has an antidepressant-like profile in the rat chronic mild stress model of depression. Behav Pharmacol. 2000;11(2):117–124.
  • Zerkak D, Dougados M. Benefit/risk of combination therapies. Clin Exp Rheumatol. 2004;22:S71–S71.
  • Steele LS, Glazier RH. Is donepezil effective for treating Alzheimer’s disease? Can Family Physician. 1999;45:917.
  • Adams DR, Kern DW, Wroblewski KE, et al. Olfactory dysfunction predicts subsequent dementia in older US adults. J Am Geriatr Soc. 2018;66(1):140–144.
  • Pinto JM, Wroblewski KE, Kern DW, et al. Olfactory dysfunction predicts 5-year mortality in older adults. PloS One. 2014;9(10):e107541–e107541.
  • Hudd F, Shiel A, Harris M, et al. Novel blood biomarkers that correlate with cognitive performance and hippocampal volumetry: potential for early diagnosis of Alzheimer’s disease. J Alzheimers Dis. 2019;67(3):1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.