388
Views
3
CrossRef citations to date
0
Altmetric
Review

Mantle cell lymphoma: insights into therapeutic targets at the preclinical level

ORCID Icon
Pages 1029-1045 | Received 05 Jul 2020, Accepted 19 Aug 2020, Published online: 31 Aug 2020

References

  • Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol. 2019 Jun;94(6):710–725. (in eng).
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016 May 19;127(20):2375–2390. (in eng).
  • Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 2012 Oct;122(10):3416–3423. (in eng). .
  • Nadeu F, Diaz-Navarro A, Delgado J, et al. Genomic and epigenomic insights into the origin, pathogenesis and clinical behavior of mantle cell lymphoma subtypes. Blood. 2020 Jun;25. (in eng). DOI:10.1182/blood.2020005289.
  • Royo C, Navarro A, Clot G, et al. Non-nodal type of mantle cell lymphoma is a specific biological and clinical subgroup of the disease. Leukemia. 2012 Aug;26(8):1895–1898. (in eng). .
  • Eskelund CW, Dahl C, Hansen JW, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017 Oct 26;130(17):1903–1910. (in eng). .
  • Delfau-Larue M-H, Klapper W, Berger F, et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood. 2015 Jul 30;126(5):604–611. (in eng). .
  • Wang L, Tang G, Medeiros LJ, et al. MYC rearrangement but not extra MYC copies is an independent prognostic factor in patients with mantle cell lymphoma. Haematologica. 2020 Apr 9;haematol.2019.243071. (in eng). DOI:10.3324/haematol.2019.243071.
  • Pinyol M, Hernandez L, Cazorla M, et al. Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood. 1997 Jan 1;89(1):272–280. (in eng).
  • Zhang J, Jima D, Moffitt AB, et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 2014 May 8;123(19):2988–2996. (in eng). .
  • Ahmed M, Zhang L, Nomie K, et al. Gene mutations and actionable genetic lesions in mantle cell lymphoma. Oncotarget. 2016 Sep 6;7(36):58638–58648. (in eng). .
  • Jain P, Zhang S, Kanagal-Shamanna R, et al. Genomic profiles and clinical outcomes of de novo blastoid/pleomorphic MCL are distinct from those of transformed MCL. Blood Adv. 2020 Mar 24;4(6):1038–1050. (in eng). .
  • Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18250–18255. (in eng). .
  • Hill HA, Qi X, Jain P, et al. Genetic mutations and features of mantle cell lymphoma: a systematic review and meta-analysis. Blood Adv. 2020 Jul 14;4(13):2927–2938. (in eng). .
  • Kridel R, Meer B, Rogic S, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012 Mar 1;119(9):1963–1971. (in eng). .
  • Ferrero S, Rossi D, Rinaldi A, et al. KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study. Haematologica. 2020 Jun;105(6):1604–1612. (in eng). .
  • Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012 Aug 9;367(6):520–531. (in eng). .
  • Visco C, Chiappella A, Nassi L, et al. Rituximab, bendamustine, and low-dose cytarabine as induction therapy in elderly patients with mantle cell lymphoma: a multicentre, phase 2 trial from Fondazione Italiana Linfomi. The Lancet Haematology. 2017 Jan;4(1):e15–e23. (in eng). .
  • Robak T, Jin J, Pylypenko H, et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma: final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018 Nov;19(11):1449–1458. (in eng). .
  • Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013 Apr 6;381(9873):1203–1210. (in eng). .
  • Lenz G, Dreyling M, Hoster E, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J Clin Oncol. 2005 Mar 20;23(9):1984–1992. (in eng). .
  • Geisler CH, Kolstad A, Laurell A, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol. 2012 Aug;158(3):355–362. (in eng). .
  • Hermine O, Hoster E, Walewski J, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European mantle cell lymphoma network. Lancet. 2016 Aug 06;388(10044):565–575. (in eng). .
  • Delarue R, Haioun C, Ribrag V, et al. CHOP and DHAP plus rituximab followed by autologous stem cell transplantation in mantle cell lymphoma: a phase 2 study from the Groupe d’Etude des Lymphomes de l’Adulte. Blood. 2013 Jan 3;121(1,):48–53. (in eng). .
  • Le Gouill S, Thieblemont C, Oberic L, et al. Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma. N Engl J Med. 2017 Sep 28;377(13):1250–1260. (in eng). .
  • Wang ML, Rule S, Martin P, et al. Targetinog BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013 Aug 8;369(6):507–516. (in eng). .
  • Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016 Feb 20;387(10020):770–778. (in eng). .
  • Wang M, Rule S, Zinzani PL, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2017 Dec;11. (in eng). DOI:10.1016/s0140-6736(17)33108-2.
  • Song Y, Zhou K, Zou D, et al. Treatment of patients with relapsed or refractory mantle-cell lymphoma with zanubrutinib, a selective inhibitor of Bruton’s Tyrosine Kinase. Clin Cancer Res off J Am Assoc Cancer Res. 2020 May 27;26(16):4216–4224. (in eng). .
  • Davids MS, Roberts AW, Seymour JF, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol. 2017 Mar 10;35(8):826–833. (in eng). .
  • Trneny M, Lamy T, Walewski J, et al. Lenalidomide versus investigator’s choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): a phase 2, randomised, multicentre trial. Lancet Oncol. 2016 Mar;17(3):319–331. (in eng). .
  • Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009 Aug 10;27(23):3822–3829. (in eng). .
  • Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2006 Oct 20;24(30):4867–4874. (in eng). .
  • Lamm W, Kaufmann H, Raderer M, et al. Bortezomib combined with rituximab and dexamethasone is an active regimen for patients with relapsed and chemotherapy-refractory mantle cell lymphoma. Haematologica. 2011 Jul;96(7):1008–1014. (in eng). .
  • Forero-Torres A, Ramchandren R, Yacoub A, et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019 Apr 18;133(16):1742–1752. (in eng). .
  • Tarantelli C, Lange M, Gaudio E, et al. Copanlisib synergizes with conventional and targeted agents including venetoclax in B- and T-cell lymphoma models. Blood Adv. 2020 Mar 10;4(5):819–829. (in eng). .
  • Davids MS, Kim HT, Nicotra A, et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: a multicentre phase 1-1b study. Lancet Haematol. 2019 Jan;6(1):e38–e47. (in eng). .
  • Lunning M, Vose J, Nastoupil L, et al. Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2019 Nov 21;134(21):1811–1820. (in eng). .
  • Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2020 Apr 2;382(14):1331–1342. (in eng). .
  • Dreyling M, Klapper W, Rule S. Blastoid and pleomorphic mantle cell lymphoma: still a diagnostic and therapeutic challenge! Blood. 2018 Dec 27;132(26):2722–2729. (in eng). .
  • Young RM, Phelan JD, Wilson WH, et al. Pathogenic B-cell receptor signaling in lymphoid malignancies: new insights to improve treatment. Immunol Rev. 2019 Sep;291(1):190–213. (in eng). .
  • Bomben R, Ferrero S, D’Agaro T, et al. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: results from the Fondazione Italiana Linfomi MCL-0208 trial. Haematologica. 2018 May;103(5):849–856. (in eng). .
  • Flinsenberg TWH, Tromedjo CC, Hu N, et al. Differential effects of BTK inhibitors ibrutinib and zanubrutinib on NK-cell effector function in patients with mantle cell lymphoma. Haematologica. 2020;105(2):e76–e79. (in eng).
  • Rule S, Dreyling M, Goy A, et al. Ibrutinib for the treatment of relapsed/refractory mantle cell lymphoma: extended 3.5-year follow up from a pooled analysis. Haematologica. 2019 May;104(5):e211–e214. (in eng). .
  • Cheah CY, Chihara D, Romaguera JE, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015 Jun;26(6):1175–1179. (in eng). .
  • Jain P, Kanagal-Shamanna R, Zhang S, et al. Long-term outcomes and mutation profiling of patients with mantle cell lymphoma (MCL) who discontinued ibrutinib. Br J Haematol. 2018 Nov;183(4):578–587. (in eng). .
  • Woyach JA, Furman RR, Liu T-M, et al. Resistance Mechanisms for the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. N Engl J Med. 2014 Jun 12;370(24):2286–2294. (in eng). .
  • Ma J, Lu P, Guo A, et al. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells. Br J Haematol. 2014 Sep;166(6):849–861. (in eng). .
  • Jain P, Romaguera J, Srour SA, et al. Four-year follow-up of a single arm, phase II clinical trial of ibrutinib with rituximab (IR) in patients with relapsed/refractory mantle cell lymphoma (MCL). Br J Haematol. 2018 Aug;182(3):404–411. (in eng). .
  • Jerkeman M, Eskelund CW, Hutchings M, et al. Ibrutinib, lenalidomide, and rituximab in relapsed or refractory mantle cell lymphoma (PHILEMON): a multicentre, open-label, single-arm, phase 2 trial. The Lancet Haematology. 2018 Mar;5(3):e109–e116. (in eng). .
  • Tam CS, Anderson MA, Pott C, et al. Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma. N Engl J Med. 2018 Mar 29;378(13):1211–1223. (in eng). .
  • Owen C, Berinstein NL, Christofides A, et al. Review of Bruton tyrosine kinase inhibitors for the treatment of relapsed or refractory mantle cell lymphoma. Curr Oncol. 2019 Apr;26(2):e233–e240. (in eng). .
  • Witzig TE, Inwards D. Acalabrutinib for mantle cell lymphoma. Blood. 2019 Jun 13;133(24):2570–2574. (in eng). .
  • Syed YY. Zanubrutinib: first Approval. Drugs. 2020 Jan;80(1):91–97. (in eng). .
  • Walter HS, Rule SA, Dyer MJS, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016 Jan 28;127(4):411–419. (in eng). .
  • Bond DA, Woyach JA. Targeting BTK in CLL: beyond Ibrutinib. Curr Hematol Malig Rep. 2019 Jun;14(3):197–205. (in eng). .
  • Reiff SD, Mantel R, Smith LL, et al. The BTK Inhibitor ARQ 531 Targets Ibrutinib-Resistant CLL and Richter Transformation. Cancer Discov. 2018 Oct;8(10):1300–1315. (in eng). .
  • Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010 Apr 1;115(13):2578–2585. (in eng). .
  • Andorsky DJ, Kolibaba KS, Assouline S, et al. An open-label phase 2 trial of entospletinib in indolent non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol. 2019 Jan;184(2):215–222. (in eng). .
  • Gordon LI, Kaplan JB, Popat R, et al. Phase I Study of TAK-659, an Investigational, Dual SYK/FLT3 Inhibitor, in Patients with B-cell Lymphoma. Clin Cancer Res off J Am Assoc Cancer Res. 2020 Apr;23. (in eng). DOI:10.1158/1078-0432.Ccr-19-3239.
  • Coffey GP, Feng J, Betz A, et al. Cerdulatinib Pharmacodynamics and Relationships to Tumor Response Following Oral Dosing in Patients with Relapsed/Refractory B-cell Malignancies. Clin Cancer Res off J Am Assoc Cancer Res. 2019 Feb 15;25(4):1174–1184. (in eng). .
  • Myklebust JH, Brody J, Kohrt HE, et al. Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood. 2017 Feb 9;129(6):759–770. (in eng). .
  • Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015 Jun;16(6):704–715. (in eng). .
  • Rauert-Wunderlich H, Rudelius M, Ott G, et al. Targeting protein kinase C in mantle cell lymphoma. Br J Haematol. 2016 May;173(3):394–403. (in eng). .
  • Vidal-Crespo A, Rodriguez V, Matas-Cespedes A, et al. The Bruton tyrosine kinase inhibitor CC-292 shows activity in mantle cell lymphoma and synergizes with lenalidomide and NIK inhibitors depending on nuclear factor-kappaB mutational status. Haematologica. 2017 Nov;102(11):e447–e451. (in eng). .
  • Zhang Q, Wang HY, Liu X, et al. Cutting Edge: ROR1/CD19 Receptor Complex Promotes Growth of Mantle Cell Lymphoma Cells Independently of the B Cell Receptor-BTK Signaling Pathway. J Immunol (Baltimore, Md: 1950). 2019 Oct 15;203(8):2043–2048. (in eng).
  • Ming M, Wu W, Xie B, et al. XPO1 Inhibitor Selinexor Overcomes Intrinsic Ibrutinib Resistance in Mantle Cell Lymphoma via Nuclear Retention of IκB. Mol Cancer Ther. 2018 Dec;17(12):2564–2574. (in eng). .
  • Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019 Feb 19;18(1):26. (in eng). .
  • Rao E, Jiang C, Ji M, et al. The miRNA-17∼92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia. 2012 May;26(5):1064–1072. (in eng). .
  • Psyrri A, Papageorgiou S, Liakata E, et al. Phosphatidylinositol 3ʹ-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res off J Am Assoc Cancer Res. 2009 Sep 15;15(18):5724–5732. (in eng).
  • Obrador-Hevia A, Serra-Sitjar M, Rodríguez J, et al. The tumour suppressor FOXO3 is a key regulator of mantle cell lymphoma proliferation and survival. Br J Haematol. 2012 Feb;156(3):334–345. (in eng). .
  • Parry-Jones N, Matutes E, Morilla R, et al. Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by FISH. Br J Haematol. 2007 Apr;137(2):117–124. (in eng).
  • Chiron D, Di Liberto M, Martin P, et al. Cell-Cycle Reprogramming for PI3K Inhibition Overrides a Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma. Cancer Discov. 2014 Sep;4(9):1022–1035. (in eng). .
  • Kahl BS, Spurgeon SE, Furman RR, et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2014 May 29;123(22):3398–3405. (in eng). .
  • Dreyling M, Morschhauser F, Bouabdallah K, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017 Sep 1;28(9):2169–2178. (in eng). .
  • Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018 Dec 6;132(23):2446–2455. (in eng). .
  • Rudelius M, Pittaluga S, Nishizuka S, et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood. 2006 Sep 1;108(5):1668–1676. (in eng). .
  • Brown JS, Banerji U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther. 2017 Apr;172:101–115. (in eng). .
  • Reis-Sobreiro M, Roué G, Moros A, et al. Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer J. 2013 May 31;3(5):e118. (in eng). .
  • Ferreira GA, Thomé CH, Simão AMS, et al. The lipid raft protein NTAL participates in AKT signaling in mantle cell lymphoma. Leuk Lymphoma. 2019 Nov;60(11):2658–2668. (in eng).
  • Erdmann T, Klener P, Lynch JT, et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood. 2017 Feb;15. (in eng). DOI:10.1182/blood-2016-12-758599.
  • Oki Y, Fanale M, Romaguera J, et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br J Haematol. 2015 Nov;171(4):463–470. (in eng). .
  • Hess G, Keller U, Scholz CW, et al. Safety and efficacy of Temsirolimus in combination with Bendamustine and Rituximab in relapsed mantle cell and follicular lymphoma. Leukemia. 2015 Aug;29(8):1695–1701. (in eng). .
  • Chen D, Mao C, Zhou Y, et al. PF-04691502, a dual PI3K/mTOR inhibitor has potent pre-clinical activity by inducing apoptosis and G1 cell cycle arrest in aggressive B-cell non-Hodgkin lymphomas. Int J Oncol. 2016 Jan;48(1):253–260. (in eng). .
  • Tarantelli C, Gaudio E, Arribas AJ, et al. PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy. Clin Cancer Res off J Am Assoc Cancer Res. 2018 Jan 1;24(1):120–129. (in eng). .
  • Civallero M, Cosenza M, Marcheselli L, et al. NVP-BEZ235 alone and in combination in mantle cell lymphoma: an effective therapeutic strategy. Expert Opin Investig Drugs. 2012 Nov;21(11):1597–1606. (in eng). .
  • Brown JR, Hamadani M, Hayslip J, et al. Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: an open-label, phase 2 trial. Lancet Haematol. 2018 Apr;5(4):e170–e180. (in eng). .
  • Eyre TA, Hildyard C, Hamblin A, et al. A phase II study to assess the safety and efficacy of the dual mTORC1/2 inhibitor vistusertib in relapsed, refractory DLBCL. Hematol Oncol. 2019 Oct;37(4):352–359. (in eng). .
  • Schreiber S, Hoellein A, Decker T, et al. Everolimus maintenance in patients with mantle cell lymphoma not eligible for intensive therapy: results of a prematurely closed phase 2 study. Leuk Lymphoma. 2015;56(11):3227–3229. (in eng).
  • Lemm EA, Valle-Argos B, Smith D, et al. Preclinical evaluation of a novel SHIP1 phosphatase activator for inhibition of PI3K signaling in malignant B-cells. Clin Cancer Res off J Am Assoc Cancer Res. 2019 Dec;12. (in eng). DOI:10.1158/1078-0432.ccr-19-2202.
  • Sestito S, Rapposelli S. A patent update on PDK1 inhibitors (2015-present). Expert Opin Ther Pat. 2019 Apr;29(4):271–282. (in eng). .
  • Maegawa S, Chinen Y, Shimura Y, et al. “Phosphoinositide-dependent protein kinase 1 is a potential novel therapeutic target in mantle cell lymphoma. Exp Hematol. 2018 Mar;59:72–81. (in eng). e2. .
  • Balaji S, Ahmed M, Lorence E, et al. NF-κB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol Oncol. 2018 Jun 15;11(1):83. (in eng). .
  • Rahal R, Frick M, Romero R, et al. Pharmacological and genomic profiling identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014 Jan;20(1):87–92. (in eng). .
  • Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017 Jul;14(7):417–433. (in eng). .
  • Robak T, Huang H, Jin J, et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015 Mar 5;372(10):944–953. (in eng). .
  • Pérez-Galán P, Roué G, Villamor N, et al. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood. 2006 Jan 1;107(1):257–264. (in eng). .
  • Till BG, Li H, Bernstein SH, et al. Phase II trial of R-CHOP plus bortezomib induction therapy followed by bortezomib maintenance for newly diagnosed mantle cell lymphoma: SWOG S0601. Br J Haematol. 2016 Jan;172(2):208–218. (in eng). .
  • Czuczman NM, Barth MJ, Gu J, et al. Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in mantle cell lymphoma and enhances rituximab activity in vivo. Blood. 2016 Mar 3;127(9):128–137. (in eng). .
  • Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell. 2014 Jun 5;54(5):728–736. (in eng). .
  • Tsukamoto T, NAKAHATA S, SATO R, et al. BRD4-Regulated Molecular Targets in Mantle Cell Lymphoma: insights into Targeted Therapeutic Approach. Cancer Genomics Proteomics. 2020;17(1):77–89. Jan-Feb. (in eng). .
  • Zou Z, Huang B, Wu X, et al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene. 2014 May 1;33(18):2395–2404. (in eng). .
  • Sun B, Shah B, Fiskus W, et al. Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565–1574. (in eng). .
  • Moros A, Rodríguez V, Saborit-Villarroya I, et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia. 2014 Oct;28(10):2049–2059. (in eng). .
  • Tarantelli C, Bernasconi E, Gaudio E, et al. BET bromodomain inhibitor birabresib in mantle cell lymphoma: in vivo activity and identification of novel combinations to overcome adaptive resistance. ESMO Open. 2018;3(6):e000387. (in eng).
  • Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ. 2018 Jan;25(1):21–26. (in eng). .
  • Li Y, Bouchlaka MN, Wolff J, et al. FBXO10 deficiency and BTK activation upregulate BCL2 expression in mantle cell lymphoma. Oncogene. 2016 Dec 1;35(48):6223–6234. (in eng). .
  • Davids MS. Targeting BCL-2 in B-cell lymphomas. Blood. 2017 Aug 31;130(9):1081–1088. (in eng). .
  • Eyre TA, Walter HS, Iyengar S, et al. Efficacy of venetoclax monotherapy in patients with relapsed, refractory mantle cell lymphoma after Bruton tyrosine kinase inhibitor therapy. Haematologica. 2019 Feb;104(2):e68–e71. (in eng). .
  • Casara P, Davidson J, Claperon A, et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget. 2018 Apr 13;9(28):20075–20088. (in eng). .
  • Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018 Dec 17;9(1):5341. (in eng). .
  • Kotschy A, Szlavik Z, Murray J, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016 Oct 27;538(7626):477–482. (in eng). .
  • Fletcher S. MCL-1 inhibitors - where are we now (2019)? Expert Opin Ther Pat. 2019 Nov;29(11):909–919. (in eng). .
  • Caenepeel S, Brown SP, Belmontes B, et al. AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies.. Cancer Discov. 2018 Dec;8(12):1582–1597. (in eng). .
  • Wei AH, Roberts AW, Spencer A, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress. Blood Rev. 2020 Feb 21:100672. (in eng). DOI: 10.1016/j.blre.2020.100672.
  • Leverson JD, Phillips DC, Mitten MJ, et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med. 2015 Mar 18;7(279):279ra40. (in eng). .
  • Prukova D, Andera L, Nahacka Z, et al. Cotargeting of BCL2 with Venetoclax and MCL1 with S63845 Is Synthetically Lethal In Vivo in Relapsed Mantle Cell Lymphoma. Clin Cancer Res off J Am Assoc Cancer Res. 2019 Jul 15;25(14):4455–4465. (in eng). .
  • Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017 Jan 27;17(2):93–115. (in eng). .
  • Beà S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood. 2009 Mar 26;113(13):3059–3069.
  • Finn RS, Martin M, Rugo HS, et al. Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med. 2016;375(20):1925–1936. (in eng). Nov 17.
  • Martin P, Bartlett NL, Blum KA, et al. A phase 1 trial of ibrutinib plus palbociclib in previously treated mantle cell lymphoma. Blood. 2019 Mar 14;133(11):1201–1204. (in eng). .
  • Morschhauser F, Bouabdallah K, Stilgenbauer S, et al. Clinical activity of abemaciclib in patients with relapsed or refractory mantle cell lymphoma - a phase II study. Haematologica. 2020 May 7: haematol.2019.224535. (in eng). doi:10.3324/haematol.2019.224535.
  • Zhao X, Ren Y, Lawlor M, et al. BCL2 Amplicon Loss and Transcriptional Remodeling Drives ABT-199 Resistance in B Cell Lymphoma Models. Cancer Cell. 2019 May 13;35(5):752–766.e9. (in eng).
  • Phillips DC, Jin S, Gregory GP, et al. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia. 2019 Dec 11 (in eng). DOI:10.1038/s41375-019-0652-0.
  • Choi YJ, Kim DH, Yoon DH, et al. Efficacy of the novel CDK7 inhibitor QS1189 in mantle cell lymphoma. Sci Rep. 2019 May 10;9(1):7193. (in eng).
  • Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription. 2019 Apr;10(2):47–56. (in eng). .
  • Höring E, Montraveta A, Heine S, et al. Dual targeting of MCL1 and NOXA as effective strategy for treatment of mantle cell lymphoma. Br J Haematol. 2017 May;177(4):557–561. (in eng). .
  • Murga-Zamalloa C, Inamdar KV, Wilcox RA. “The role of aurora A and polo-like kinases in high-risk lymphomas. Blood Adv. 2019 Jun 11;3(11):1778–1787. (in eng). .
  • Friedberg JW, Mahadevan D, Cebula E, et al. Phase II study of alisertib, a selective Aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. J Clin Oncol. 2014 Jan 1;32(1):44–50. (in eng). .
  • Ren Y, Bi C, Zhao X, et al. PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas. J Clin Invest. 2018 Dec 3;128(12):5517–5530. (in eng). .
  • Murga-Zamalloa C, Polk A, Hanel W, et al. Polo-like-kinase 1 (PLK-1) and c-myc inhibition with the dual kinase-bromodomain inhibitor volasertib in aggressive lymphomas. Oncotarget. 2017 Dec 29;8(70):114474–114480. (in eng). .
  • Zhang X, Song M, Kundu JK, et al. PIM Kinase as an Executional Target in Cancer. J Cancer Prev. 2018 Sep;23(3):109–116. (in eng). .
  • Gómez-Abad C, Pisonero H, Blanco-Aparicio C, et al. PIM2 inhibition as a rational therapeutic approach in B-cell lymphoma. Blood. 2011 Nov 17;118(20):5517–5527. (in eng). .
  • Yang Q, Chen LS, Neelapu SS, et al. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma. Blood. 2012 Oct 25;120(17):3491–3500. (in eng). .
  • Peters TL, Li L, Tula-Sanchez AA, et al. Control of translational activation by PIM kinase in activated B-cell diffuse large B-cell lymphoma confers sensitivity to inhibition by PIM447. Oncotarget. 2016 Aug 20;7(39):63362–63373. (in Eng). .
  • Schatz JH, Oricchio E, Wolfe AL, et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J Exp Med. 2011 Aug 29;208(9):1799–1807. (in eng). .
  • Hsi ED, Jung S-H, Lai R, et al. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma. 2008 Nov;49(11):2081–2090. (in eng). .
  • Cortes J, Tamura K, DeAngelo DJ, et al. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer. 2018 May;118(11):1425–1433. (in eng). .
  • Chen LS, Redkar S, Bearss D, et al. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood. 2009 Nov 5;114(19):4150–4157. (in eng). .
  • Jeyapal GP, Chandrasekar MJN, Krishnasamy R, et al. Potential pharmacological inhibitors of pim kinase under clinical trials. Anticancer Agents Med Chem. 2018;18(8):1100–1114. (in eng).
  • Silkenstedt E, Arenas F, Colom-Sanmartí B, et al. Notch1 signaling in NOTCH1-mutated mantle cell lymphoma depends on Delta-Like ligand 4 and is a potential target for specific antibody therapy. J Exp Clin Cancer Res. 2019 Nov 1;38(1):446. (in eng).
  • Zhang H, Chen Z, Neelapu SS, et al. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment. Oncotarget. 2016 Mar 22;7(12):14350–14365. (in eng). .
  • Wang L, Zhao Y, Qian J, et al. Toll-like receptor-4 signaling in mantle cell lymphoma: effects on tumor growth and immune evasion. Cancer. 2013 Feb 15;119(4):782–791. (in eng). .
  • Balsas P, Palomero J, Eguileor Á, et al. SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma. Blood. 2017 Jul 27;130(4):501–513. (in eng). .
  • Chen Z, Teo AE, McCarty N. ROS-Induced CXCR4 Signaling Regulates Mantle Cell Lymphoma (MCL) Cell Survival and Drug Resistance in the Bone Marrow Microenvironment via Autophagy. Clin Cancer Res off J Am Assoc Cancer Res. 2016 Jan 1;22(1):187–199. (in eng). .
  • Chen L, Ouyang J, Wienand K, et al. CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas. Haematologica. 2020 May;105(5):1361–1368. (in eng). .
  • Pansy K, Feichtinger J, Ehall B, et al. The CXCR4-CXCL12-Axis Is of Prognostic Relevance in DLBCL and Its Antagonists Exert Pro-Apoptotic Effects In Vitro. Int J Mol Sci. 2019 Sep 24;20(19):4740. (in eng). .
  • Falgàs A, Pallarès V, Unzueta U, et al. A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica. 2020 Mar;105(3):741–753. (in eng). .
  • Mohanty A, Sandoval N, Phan A, et al. Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood. 2019 Jan 24;133(4):306–318. (in eng). .
  • Xargay-Torrent S, Lopez-Guerra M, Saborit-Villarroya I, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res off J Am Assoc Cancer Res. 2011 Jun 15;17(12):3956–3968. (in eng). .
  • Ribeiro ML, Reyes-Garau D, Armengol M, et al. Recent Advances in the Targeting of Epigenetic Regulators in B-Cell Non-Hodgkin Lymphoma. Front Genet. 2019;10:986. (in eng).
  • Spurgeon SE, Sharma K, Claxton DF, et al. Phase 1–2 study of vorinostat (SAHA), cladribine and rituximab (SCR) in relapsed B-cell non-Hodgkin lymphoma and previously untreated mantle cell lymphoma. Br J Haematol. 2019 Sep;186(6):845–854. (in eng). .
  • Ribrag V, Kim WS, Bouabdallah R, et al. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: results of a phase II study. Haematologica. 2017;102(5):903–909. May. (in eng). .
  • Guo H, Zeng D, Zhang H, et al. Dual inhibition of PI3K signaling and histone deacetylation halts proliferation and induces lethality in mantle cell lymphoma. Oncogene. 2019 Mar;38(11):1802–1814. (in eng). .
  • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008 Mar 7;319(5868):1352–1355. (in eng). .
  • Choe J-Y, Yun JY, Na HY, et al. MYC overexpression correlates with MYC amplification or translocation, and is associated with poor prognosis in mantle cell lymphoma. Histopathology. 2016 Feb;68(3):442–449. (in eng). .
  • Williamson CT, Kubota E, Hamill JD, et al. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53. EMBO Mol Med. 2012 Jun;4(6):515–527. (in eng). .
  • Williamson CT, Muzik H, Turhan AG, et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther. 2010 Feb;9(2):347–357. (in eng). .
  • Boussios S, Abson C, Moschetta M, et al. Poly (ADP-Ribose) Polymerase Inhibitors: talazoparib in Ovarian Cancer and Beyond. Drugs R D. 2020 Jun;20(2):55–73. (in eng). .
  • Chilà R, Basana A, Lupi M, et al. Combined inhibition of Chk1 and Wee1 as a new therapeutic strategy for mantle cell lymphoma. Oncotarget. 2015 Feb 20;6(5):3394–3408. (in eng). .
  • Lloyd RL, Wijnhoven PWG, Ramos-Montoya A, et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene. 2020 Jun;39(25):4869–4883. (in eng). .
  • Restelli V, Lupi M, Chilà R, et al. DNA Damage Response Inhibitor Combinations Exert Synergistic Antitumor Activity in Aggressive B-Cell Lymphomas. Mol Cancer Ther. 2019 Jul;18(7):1255–1264. (in eng). .
  • Young LA, O’Connor LO, de Renty C, et al. Differential Activity of ATR and WEE1 Inhibitors in a Highly Sensitive Subpopulation of DLBCL Linked to Replication Stress. Cancer Res. 2019 Jul 15;79(14):3762–3775. (in eng). .
  • Boudny M, Zemanova J, Khirsariya P, et al. Novel CHK1 inhibitor MU380 exhibits significant single-agent activity in TP53-mutated chronic lymphocytic leukemia cells. Haematologica. 2019 Dec;104(12):2443–2455. (in eng). .
  • Yang P, Zhang W, Wang J, et al. Genomic landscape and prognostic analysis of mantle cell lymphoma. Cancer Gene Ther. 2018 Jun;25(5–6):129–140. (in eng). .
  • Jaffe JD, Wang Y, Chan HM, et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet. 2013 Nov;45(11):1386–1391. (in eng). .
  • Chesi M, Nardini E, Lim RS, et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998 Nov 1;92(9):3025–3034. (in eng).
  • Pei H, Zhang L, Luo K, et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 2011 Feb 3;470(7332):124–128. (in eng). .
  • Zhang J, Lee Y-R, Dang F, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019 Sep;9(9):1306–1323. (in eng). .
  • Shen Y, Morishita M, Lee D, et al. Identification of LEM-14 inhibitor of the oncoprotein NSD2. Biochem Biophys Res Commun. 2019 Jan 1;508(1):102–108. (in eng). .
  • Lane HA, Wood JM, McSheehy PMJ, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res off J Am Assoc Cancer Res. 2009 Mar 1;15(5):1612–1622. (in eng). .
  • Lu L, Payvandi F, Wu L, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009 Mar;77(2):78–86. (in eng). .
  • Zarfati M, Avivi I, Brenner B, et al. Extracellular vesicles of multiple myeloma cells utilize the proteasome inhibitor mechanism to moderate endothelial angiogenesis. Angiogenesis. 2019 Feb;22(1):185–196. (in eng). .
  • Veselá P, Tonar Z, Šálek D, et al. Microvessel density of mantle cell lymphoma. A retrospective study of its prognostic role and the correlation with the Ki-67 and the mantle cell lymphoma international prognostic index in 177 cases. Virchows Arch. 2014 Nov;465(5):587–597. (in eng). .
  • Palomero J, Vegliante MC, Rodríguez ML, et al. SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood. 2014 Oct 2;124(14):2235–2247. (in eng). .
  • Petrakis G, Veloza L, Clot G, et al. Increased tumour angiogenesis in SOX11-positive mantle cell lymphoma. Histopathology. 2019 Nov;75(5):704–714. (in eng). .
  • Ruan J, Gregory SA, Christos P, et al. Long-term follow-up of R-CHOP with bevacizumab as initial therapy for mantle cell lymphoma: clinical and correlative results. Clin Lymphoma Myeloma Leuk. 2014 Apr;14(2):107–113. (in eng).
  • Xargay-Torrent S, Lopez-Guerra M, Montraveta A, et al. Sorafenib inhibits cell migration and stroma-mediated bortezomib resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma. Clin Cancer Res off J Am Assoc Cancer Res. 2013 Feb 1;19(3):586–597. (in eng). .
  • Salles G, Barrett M, Foà R, et al. Rituximab in B-Cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther. 2017 Oct;34(10):2232–2273. (in eng). .
  • Sun M, Zhang H. Therapeutic antibodies for mantle cell lymphoma: a brand-new era ahead. Heliyon. 2019 Mar;5(3):e01297. (in eng). .
  • Morschhauser FA, Cartron G, Thieblemont C, et al. Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large b-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013 Aug 10;31(23):2912–2919. (in eng). .
  • Furtado M, Dyer MJ, Johnson R, et al. Ofatumumab monotherapy in relapsed/refractory mantle cell lymphoma–a phase II trial. Br J Haematol. 2014 May;1654:575–578. (in eng). .
  • Jurczak W, Zinzani PL, Gaidano G, et al. Phase IIa study of the CD19 antibody MOR208 in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Ann Oncol. 2018 May 1;29(5):1266–1272. (in eng). .
  • Chen Y, Chen L, Yu J, et al. Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia. Blood. 2019 Sep 26;134(13):1084–1094. (in eng). .
  • Skarbnik AP, Smith MR. Radioimmunotherapy in mantle cell lymphoma. Best Pract Res Clin Haematol. 2012 Jun;25(2):201–210. (in eng). .
  • Wang M, Oki Y, Pro B, et al. Phase II study of yttrium-90-ibritumomab tiuxetan in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009 Nov 1;27(31):5213–5218. (in eng). .
  • Hohloch K, Windemuth-Kieselbach C, Zinzani PL, et al. Radioimmunotherapy for mantle cell lymphoma: 5-year follow-up of 90 patients from the international RIT registry. Ann Hematol. 2020 May;99(5):1073–1079. (in eng). .
  • Jurczak W, Gruszka AM, Sowa Staszczak A, et al. Consolidation with 90 Y ibritumomab tiuxetan radioimmunotherapy in mantle cell lymphoma patients ineligible for high dose therapy: results of the phase II multicentre Polish Lymphoma Research Group trial, after 8-year long follow-up. Leuk Lymphoma. 2019 Nov;60(11):2689–2696. (in eng). .
  • Schaefer NG, James E, Wahl RL. Poly(ADP-ribose) polymerase inhibitors combined with external beam and radioimmunotherapy to treat aggressive lymphoma. Nov Nucl Med Commun. 2011;3211:1046–1051. (in eng). .
  • Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science (New York, N Y). 2014 Jan 17;343(6168):305–309. (in eng). .
  • Hagner PR, Chiu H, Ortiz M, et al. Activity of lenalidomide in mantle cell lymphoma can be explained by NK cell-mediated cytotoxicity. Br J Haematol. 2017 Nov;179(3):399–409. (in eng). .
  • Gribben JG, Fowler N, Morschhauser F. Mechanisms of action of lenalidomide in B-cell non-hodgkin lymphoma. J Clin Oncol. 2015 Sep 1;33(25):2803–2811. (in eng). .
  • Ruan J, Martin P, Shah B, et al. Lenalidomide plus rituximab as initial treatment for mantle-cell lymphoma. N Engl J Med. 2015 Nov 5;373(19):1835–1844. (in eng). .
  • Hude I, Sasse S, Engert A, et al. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica. 2017 Jan;102(1):30–42. (in eng). .
  • Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018 Jan 4;131(1):68–83. (in eng). .
  • Giuliani M, Janji B, Berchem G. Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget. 2017 Apr 4;8(14):24031–24044. (in eng). .
  • Ansell SM, Flinn I, Taylor MH, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, for hematologic malignancies. Blood Adv. 2020 May 12;4(9):1917–1926. (in eng). .
  • Chester C, Sanmamed MF, Wang J, et al. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018 Jan 4;131(1):49–57. (in eng). .
  • Turaj AH, Hussain K, Cox KL, et al. Antibody tumor targeting is enhanced by CD27 agonists through myeloid recruitment. Cancer Cell. 2017 Dec 11;32(6):777–791.e6. (in eng). .
  • Lejeune M, Köse MC, Duray E, et al. Bispecific, T-cell-recruiting antibodies in B-cell malignancies. Front Immunol. 2020;11:762. (in eng).
  • Goebeler M-E, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016 Apr 1;34(10):1104–1111. (in eng). .
  • Mohty M, Gautier J, Malard F, et al. CD19 chimeric antigen receptor-T cells in B-cell leukemia and lymphoma: current status and perspectives. Leukemia. 2019 Dec;33(12):2767–2778. (in eng).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.