1,460
Views
20
CrossRef citations to date
0
Altmetric
Review

Systemic lupus erythematosus (SLE): emerging therapeutic targets

& ORCID Icon
Pages 1283-1302 | Received 24 Jun 2020, Accepted 01 Oct 2020, Published online: 01 Dec 2020

References

  • Banchereau R, Hong S, Cantarel B, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016 Apr 21;165(3):551–565.
  • Shlomchik MJ, Madaio MP, Ni D, et al. The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med. 1994 Oct 1;180(4):1295–1306.
  • Jacob N, Guo S, Mathian A, et al. B cell and BAFF dependence of IFN-α-exaggerated disease in systemic lupus erythematosus-prone NZM 2328 mice. J Immunol. 2011 Apr 15;186(8):4984–4993.
  • Ehrenstein MR, Katz DR, Griffiths MH, et al. Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int. 1995 Sep;48(3):705–711.
  • Vlahakos D, Foster MH, Ucci AA, et al. Murine monoclonal anti-DNA antibodies penetrate cells, bind to nuclei, and induce glomerular proliferation and proteinuria in vivo. J Am Soc Nephrol. 1992. 2. Feb(8):1345–1354.
  • Chan O, Shlomchik MJ. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol. 1998 Jan 1;160(1):51–59.
  • Chan OT, Hannum LG, Haberman AM, et al. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 1999 May 17;189(10):1639–1648.
  • Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994 Sep;15(9):450–454.
  • Chan VS-F, Tsang HH-L, Tam RC-Y, et al. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol. 2013 Mar;10(2):133–142.
  • Traczewski P, Rudnicka L. Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol. 2011 Feb;71(2):175–182.
  • Ahuja A, Shupe J, Dunn R, et al. Depletion of B cells in murine lupus: efficacy and resistance. J Immunol. 2007 Sep 1;179(5):3351–3361.
  • Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med [ Internet]. 2019 Mar 6 [cited 2020 May 9];11(482):eaav1648. Available from: https://stm.sciencemag.org/content/11/482/eaav1648
  • Gallagher S, Yusuf I, McCaughtry TM, et al. MEDI-551 treatment effectively depletes B cells and reduces serum titers of autoantibodies in mice transgenic for Sle1 and human CD19. Arthritis Rheumatol. 2016;68(4):965–976.
  • Chu SY, Vostiar I, Karki S, et al. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol. 2008 Sep;45(15):3926–3933.
  • Szili D, Cserhalmi M, Bankó Z, et al. Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcγRIIb and CD19. MAbs. 2014 Jul 1;6(4):991–999.
  • Horton HM, Chu SY, Ortiz EC, et al. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J Immunol. 2011 Apr 1;186(7):4223–4233.
  • Clark EA, Giltiay NV. CD22: a regulator of innate and adaptive B cell responses and autoimmunity. Front Immunol [Internet]. 2018 [cited 2020 May 9];9. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2018.02235/full
  • Santiago M-L, Mary C, Parzy D, et al. Linkage of a major quantitative trait locus to Yaa gene-induced lupus-like nephritis in (NZW × C57BL/6)F1 mice. Eur J Immunol. 1998;28(12):4257–4267.
  • Mary C, Laporte C, Parzy D, et al. Dysregulated expression of the Cd22 gene as a result of a short interspersed nucleotide element insertion in Cd22a lupus-prone mice. J Immunol. 2000 Sep 15;165(6):2987–2996.
  • O’Keefe TL, Williams GT, Batista FD, et al. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med. 1999 Apr 19;189(8):1307–1313.
  • Sanz I, Lee FE-H. B cells as therapeutic targets in SLE. Nat Rev Rheumatol. 2010 June 6;6:326–337.
  • Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008 July;14(7):748–755.
  • Ichikawa HT, Conley T, Muchamuel T, et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 2012 Feb;64(2):493–503.
  • Seavey MM, Lu LD, Stump KL, et al. Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int Immunopharmacol. 2012 Jan;12(1):257–270.
  • Tim YTL, Kristine PNg, Geraldine C, et al. A retrospective seven‐year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at university college london hospital: the first fifty patients - Lu - 2009 - arthritis care & research - Wiley Online Library [ Internet]. [cited 2020 Apr 19]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/art.24341
  • Ramos-Casals M, Soto M, Cuadrado M, et al. Rituximab in systemic lupus erythematosusA systematic review of off-label use in 188 cases. Lupus. 2009 Aug 1;18(9):767–776.
  • Furie R, Aroca G, Alvarez A, et al. A Phase II Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Obinutuzumab or Placebo in Combination with Mycophenolate Mofetil in Patients with Active Class III or IV Lupus Nephritis [abstract]. Arthritis Rheumatol. 2019;71(suppl 10). [cited 2020 Oct 12]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02550652
  • Chen D, Ireland SJ, Davis LS, et al. Autoreactive CD19+CD20− plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J Immunol. 2016 Feb 15;196(4):1541–1549.
  • Merrill J, June J, Koumpouras F, et al. Fri0176 phase 2, double-blind, randomized, placebo-controlled study of a reversible B cell inhibitor, Xmab®5871, in systemic lupus erythematosus (SLE). Ann Rheum Dis. 2019 Jun 1;78(Suppl 2):761–762.
  • Geh D, Gordon C. Epratuzumab for the treatment of systemic lupus erythematosus. Expert Rev Clin Immunol. 2018 Apr 3;14(4):245–258.
  • Wallace DJ, Kalunian K, Petri MA, et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis. 2014 Jan;73(1):183–190.
  • Clowse MEB, Wallace DJ, Furie RA, et al. Efficacy and safety of epratuzumab in moderately to severely active systemic lupus erythematosus: results from two phase III randomized, double‐blind, placebo‐controlled trials. Arthritis Rheumatol. 2017 Feb;69(2):362–375.
  • Segarra A, Arredondo KV, Jaramillo J, et al. Efficacy and safety of bortezomib in refractory lupus nephritis: a single-center experience. Lupus. 2020 Feb;29(2):118–125.
  • Furie R, Parikh S, Maiquez A, et al. Treatment of SLE with the immunoproteasome inhibitor KZR-616: results from the first 4 cohorts of the mission study, an open-label phase 1B dose escalation trial. Ann Rheum Dis. 2020;79(Supplement 1):1482.
  • Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol [Internet]. 2018 [cited 2020 May 25];9. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2018.02285/full
  • Stohl W. Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin Ther Targets. 2014 Apr;18(4):473–489.
  • Stohl W, Metyas S, Tan S-M, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 2003 Dec;48(12):3475–3486.
  • McCarthy EM, Lee RZ, Ní Gabhann J, et al. Elevated B lymphocyte stimulator levels are associated with increased damage in an Irish systemic lupus erythematosus cohort. Rheumatology (Oxford). 2013 Jul;52(7):1279–1284.
  • Stein JV, López-Fraga M, Elustondo FA, et al. APRIL modulates B and T cell immunity. J Clin Invest. 2002 June;109(12):1587–1598.
  • Jacob CO, Guo S, Jacob N, et al. Dispensability of APRIL to development of systemic lupus erythematosus in NZM 2328 mice. Arthritis Rheum. 2012 May;64(5):1610–1619.
  • Ramanujam M, Wang X, Huang W, et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest. 2006 Mar;116(3):724–734.
  • Huard B, Tran NL, Benkhoucha M, et al. Selective APRIL blockade delays systemic lupus erythematosus in mouse. Plos One. 2012 Feb 15;7(2):e31837.
  • Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013 Mar;41:25–33.
  • Koyama T, Tsukamoto H, Masumoto K, et al. A novel polymorphism of the human APRIL gene is associated with systemic lupus erythematosus. Rheumatology (Oxford). 2003 Aug;42(8):980–985.
  • Lee YH, Ota F, Kim-Howard X, et al. APRIL polymorphism and systemic lupus erythematosus (SLE) susceptibility. Rheumatology (Oxford). 2007 Aug;46(8):1274–1276.
  • Isenberg D, Gordon C, Licu D, et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2015 Nov;74(11):2006–2015.
  • Merrill JT, Wallace DJ, Wax S, et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol (Hoboken). 2018;70(2):266–276.
  • Shen J, Papasouliotis O, Samy E, et al. ABSTRACT NUMBER: 2642 atacicept dose rationale for a phase 3 study in patients with high disease activity and auto-antibody positive SLE. Meeting: 2018 ACR/ARHP annual meeting; Billerica (MA); Darmstadt (Germany); Lausanne (Switzerland): EMD Serono Research & Development Institute, Inc. (a business of Merck KGaA, Darmstadt, Germany); Merck Institute for Pharmacometrics, an affiliate of Merck KGaA; 3Merck KGaA, Darmstadt, Germany; EMD Serono Research & Development Institute, Inc. (a business of Merck KGaA, Darmstadt, Germany).
  • Merrill JT, Shanahan WR, Scheinberg M, et al. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2018;77(6):883–889.
  • Isenberg DA, Petri M, Kalunian K, et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016 Feb;75(2):323–331.
  • Merrill JT, van Vollenhoven RF, Buyon JP, et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016 Feb 1;75(2):332–340.
  • Wu D, Li J, Xu D, et al. A Human Recombinant Fusion Protein Targeting B Lymphocyte Stimulator (BlyS) and a Proliferation-Inducing Ligand (APRIL), Telitacicept (RC18), in Systemic Lupus Erythematosus (SLE): results of a Phase 2b Study [abstract]. Arthritis Rheumatol. 2019 [cited 2020 Aug 6];71(suppl 10). https://acrabstracts.org/abstract/a-human-recombinant-fusion-protein-targeting-b-lymphocyte-stimulator-blys-and-a-proliferation-inducing-ligand-april-telitacicept-rc18-in-systemic-lupus-erythematosus-sle-results-of-a-phase/
  • Satterthwaite AB. Bruton’s tyrosine kinase, a component of b cell signaling pathways, has multiple roles in the pathogenesis of lupus. Front Immunol [Internet]. 2018 Jan 22 [cited 2020 Jun 4];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786522/
  • Steinberg BJ, Smathers PA, Frederiksen K, et al. Ability of the xid gene to prevent autoimmunity in (NZB X NZW)F1 mice during the course of their natural history, after polyclonal stimulation, or following immunization with DNA. J Clin Invest. 1982 Sep;70(3):587–597.
  • Smith HR, Chused TM, Steinberg AD. The effect of the X-linked immune deficiency gene (xid) upon the Y chromosome-related disease of BXSB mice. J Immunol. 1983 Sep;131(3):1257–1262.
  • Steinberg EB, Santoro TJ, Chused TM, et al. Studies of congenic MRL-Ipr/Ipr.xid mice. J Immunol. 1983 Dec;131(6):2789–2795.
  • Scribner CL, Hansen CT, Klinman DM, et al. The interaction of the xid and me genes. J Immunol. 1987 Jun 1;138(11):3611–3617.
  • Seldin MF, Reeves JP, Scribner CL, et al. Effect of xid on autoimmune C3H-gld/gld mice. Cell Immunol. 1987 Jun;107(1):249–255.
  • Mihara M, Ohsugi Y, Saito K, et al. Immunologic abnormality in NZB/NZW F1 mice. Thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals. J Immunol. 1988 Jul 1;141(1):85–90.
  • Wofsy D, Seaman WE. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J Exp Med. 1985 Feb 1;161(2):378–391.
  • Chesnutt MS, Finck BK, Killeen N, et al. Enhanced lymphoproliferation and diminished autoimmunity in CD4-deficient MRL/lpr mice. Clin Immunol Immunopathol. 1998 Apr;87(1):23–32.
  • Gravano DM, Hoyer KK. Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun. 2013 Sep;45:68–79.
  • Lu K-L, Wu M-Y, Wang C-H, et al. The role of immune checkpoint receptors in regulating immune reactivity in lupus. Cells [Internet]. 2019 Oct 8 [cited 2020 Sep 3];8(10):1213. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829486/
  • Liang B, Gee RJ, Kashgarian MJ, et al. B7 costimulation in the development of lupus: autoimmunity arises either in the absence of B7.1/B7.2 or in the presence of anti-B7.1/B7.2 blocking antibodies. J Immunol. 1999 Aug 15;163(4):2322–2329.
  • Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science. 1994 Aug 26;265(5176):1225–1227.
  • Higuchi T, Aiba Y, Nomura T, et al. Cutting edge: ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J Immunol. 2002 Jan 1;168(1):9–12.
  • Daikh DI, Finck BK, Linsley PS, et al. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol. 1997 Oct 1;159(7):3104–3108.
  • Merrill JT, Burgos-Vargas R, Westhovens R, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010 Oct;62(10):3077–3087.
  • Furie R, Nicholls K, Cheng -T-T, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol (Hoboken). 2014 Feb;66(2):379–389.
  • Spicer P, Runkel L. Costimulatory pathway targets for autoimmune and inflammatory conditions: clinical successes, failures, and hope for the future. Expert Opin Investig Drugs. 2019 Feb 1;28(2):99–106.
  • Boumpas DT, Furie R, Manzi S, et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003 Mar;48(3):719–727.
  • Furie R, Bruce IN, Dörner T, et al. Fri0195 efficacy and safety of dapirolizumab pegol (DZP) in patients with moderately to severely active systemic lupus erythematosus (SLE): a randomised, placebo (PBO)-controlled study. Ann Rheum Dis. 2019 June 1;78(Suppl 2):775–776.
  • Ma X, Nakayamada S, Kubo S, et al. Expansion of T follicular helper-T helper 1 like cells through epigenetic regulation by signal transducer and activator of transcription factors. Ann Rheum Dis. 2018 Sep 1;77(9):1354–1361.
  • Larosa M, Zen M, Gatto M, et al. IL-12 and IL-23/Th17 axis in systemic lupus erythematosus. Exp Biol Med (Maywood). 2019 Jan 1;244(1):42–51.
  • Teng MWL, Bowman EP, McElwee JJ, et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015 July;21(7):719–729.
  • Miteva LD, Manolova IM, Ivanova MG, et al. Functional genetic polymorphisms in interleukin-12B gene in association with systemic lupus erythematosus. Rheumatol Int. 2012 Jan;32(1):53–59.
  • Lauwerys BR, Van Snick J, Houssiau FA. Serum IL-12 in systemic lupus erythematosus: absence of p70 heterodimers but presence of p40 monomers correlating with disease activity. Lupus. 2002;11(6):384–387.
  • Zhang Z, Kyttaris VC, Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol. 2009 Sep 1;183(5):3160–3169.
  • Kyttaris VC, Kampagianni O, Tsokos GC. Treatment with anti-interleukin 23 antibody ameliorates disease in lupus-prone mice. Biomed Res Int [Internet]. 2013 [cited 2020 May 23];2013:1–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690216/
  • Dai H, He F, Tsokos GC, et al. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol. 2017 Aug 1;199(3):903–910.
  • van Vollenhoven RF, Hahn BH, Tsokos GC, et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet. 2018 Oct 13;392(10155):1330–1339.
  • Johnson TJPC of J. Janssen announces discontinuation of phase 3 LOTUS study evaluating ustekinumab in systemic lupus erythematosus [ Internet]. [cited 2020 Aug 6]. Available from: https://www.prnewswire.com/news-releases/janssen-announces-discontinuation-of-phase-3-lotus-study-evaluating-ustekinumab-in-systemic-lupus-erythematosus-301084166.html
  • Tsokos GC, editor. Systemic lupus erythematosus: basic, applied and clinical aspects. Walthum: Elsevier; 2020.
  • Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. Trends Immunol. 2017 May;38(5):310–322.
  • Amarilyo G, Lourenço EV, Shi F-D, et al. IL-17 promotes murine lupus. J Immunol. 2014 Jul 15;193(2):540–543.
  • Crispín JC, Oukka M, Bayliss G, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008 Dec 15;181(12):8761–8766.
  • Abdel Galil SM, Ezzeldin N, El-Boshy ME. The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. Cytokine. 2015 Dec 1;76(2):280–287.
  • Benschop RJ, Chow C-K, Tian Y, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs. 2019 Sep;11(6):1175–1190.
  • Tahvildari M, Dana R. Low-dose IL-2 therapy in transplantation, autoimmunity, and inflammatory diseases. JI. 2019 Dec 1;203(11):2749–2755.
  • Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993 Oct 22;75(2):253–261.
  • Sadlack B, Löhler J, Schorle H, et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol. 1995 Nov;25(11):3053–3059.
  • Klebb G, Autenrieth IB, Haber H, et al. Interleukin-2 is indispensable for development of immunological self-tolerance. Clin Immunol Immunopathol. 1996 Dec;81(3):282–286.
  • Gutierrez-Ramos JC, Andreu JL, Revilla Y, et al. Recovery from autoimmunity of MRL/lpr mice after infection with an interleukin-2/vaccinia recombinant virus. Nature. 1990 July 19;346(6281):271–274.
  • Humrich JY, Morbach H, Undeutsch R, et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci USA. 2010 Jan 5;107(1):204–209.
  • Humrich JY, von Spee-mayer C, Siegert E, et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann Rheum Dis. 2015 Apr;74(4):791–792.
  • Humrich JY, von Spee-mayer C, Siegert E, et al. Low-dose interleukin-2 therapy in refractory systemic lupus erythematosus: an investigator-initiated, single-centre phase 1 and 2a clinical trial. Lancet Rheumatol. 2019 Sep 1;1(1):e44–54.
  • Banerjee S, Biehl A, Gadina M, et al. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017 Apr;77(5):521–546.
  • Basquiera AL, Soria NW, Ryser R, et al. Clinical significance of V617F mutation of the JAK2 gene in patients with chronic myeloproliferative disorders. Hematology. 2009 Dec;14(6):323–330.
  • Warner LM, Adams LM, Sehgal SN. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 1994 Feb;37(2):289–297.
  • Kyttaris VC, Wang Y, Juang Y-T, et al. Increased levels of NF-ATc2 differentially regulate CD154 and IL-2 genes in T cells from patients with systemic lupus erythematosus. J Immunol. 2007 Feb 1;178(3):1960–1966.
  • Kyttaris VC, Zhang Z, Kampagianni O, et al. Calcium signaling in systemic lupus erythematosus T cells: a treatment target. Arthritis Rheum. 2011 July;63(7):2058–2066.
  • Sigurdsson S, Nordmark G, Göring HHH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005 Mar;76(3):528–537.
  • Harada T, Kyttaris V, Li Y, et al. Increased expression of STAT3 in SLE T cells contributes to enhanced chemokine-mediated cell migration. Autoimmunity. 2007 Feb;40(1):1–8.
  • Edwards LJ, Mizui M, Kyttaris V. Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clin Immunol. 2015 Jun;158(2):221–230.
  • Fernandez D, Bonilla E, Mirza N, et al. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006 Sep;54(9):2983–2988.
  • Lai Z-W, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet. 2018 Mar 24;391(10126):1186–1196.
  • Shen X, Jiang H, Ying M, et al. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep. 2016 Sep 1;6(1):32087.
  • Mok CC, Ying KY, Yim CW, et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis. 2016 Jan;75(1):30–36.
  • Liu Z, Zhang H, Liu Z, et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med. 2015 Jan 6;162(1):18–26.
  • Rovin BH, Solomons N, Pendergraft WF, et al. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int. 2019;95(1):219–231.
  • Arriens C, Polyakova S, Adzerikho S, et al. Aurora phase 3 study demonstrates voclosporin statistical superiority over standard of care in lupus nephritis. 2020.
  • Aurinia announces FDA acceptance of NDA filing and priority review for voclosporin to treat lupus nephritis - pharmaceutical business review [ Internet]. [cited 2020 Aug 6]. Available from: https://www.pharmaceutical-business-review.com/news/aurinia-announces-fda-acceptance-of-nda-filing-and-priority-review-for-voclosporin-to-treat-lupus-nephritis/
  • Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018 July;392(10143):222–231.
  • Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008 Feb;40(2):152–154.
  • Graham RR, Hom G, Ortmann W, et al. Review of recent genome-wide association scans in lupus. J Intern Med. 2009 June;265(6):680–688.
  • Rullo OJ, Tsao BP. Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis. 2013 Apr;72(Suppl 2):ii56–61.
  • Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev. 2018 Jan;17(1):44–52.
  • González-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012 Jan 6;12(2):125–135.
  • Zhou J, Wang Y, Chang Q, et al. Type III interferons in viral infection and antiviral immunity. CPB. 2018;51(1):173–185.
  • Eloranta M-L, Alm GV, Rönnblom L. Disease mechanisms in rheumatology—tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. Arthritis Rheumatism. 2013;65(4):853–863.
  • Mustelin T, Lood C, Giltiay NV. Sources of pathogenic nucleic acids in systemic lupus erythematosus. Front Immunol [Internet]. 2019 [cited 2020 Sep 3];10. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2019.01028/full
  • Beck-Engeser GB, Eilat D, Wabl M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology. 2011 Nov;8(8):91.
  • Santiago-Raber M-L, Baccala R, Haraldsson KM, et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med. 2003 Mar 17;197(6):777–788.
  • Baccala R, Gonzalez-Quintial R, Schreiber RD, et al. Anti-IFNAR antibody treatment ameliorates disease in lupus-predisposed mice. J Immunol. 2012 Dec 15;189(12):5976–5984.
  • von Wussow P, Jakschies D, Hartung K, et al. Presence of interferon and anti-interferon in patients with systemic lupus erythematosus. Rheumatol Int. 1988;8(5):225–230.
  • Bezalel S, Guri KM, Elbirt D, et al. Type I interferon signature in systemic lupus erythematosus. IMAJ. 2014;16:4.
  • Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2610–2615.
  • Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003 Mar 17;197(6):711–723.
  • Guarda G, Braun M, Staehli F, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011 Feb 25;34(2):213–223.
  • Crow MK. Interferon α or β: which is the culprit in autoimmune disease? Nat Rev Rheumatol. 2016 Aug;12(8):439–440.
  • Leng R-X, Pan H-F, Liu J, et al. Evidence for genetic association of TBX21 and IFNG with systemic lupus erythematosus in a Chinese Han population. Sci Rep. 2016 Apr;6(1):22081.
  • Lit LC-W, Wong C-K, Li EK-M, et al. Elevated gene expression of Th1/Th2 associated transcription factors is correlated with disease activity in patients with systemic lupus erythematosus. J Rheumatol. 2007 Jan 1;34(1):89–96.
  • Harigai M, Kawamoto M, Hara M, et al. Excessive production of IFN-γ in patients with systemic lupus erythematosus and its contribution to induction of b lymphocyte stimulator/b cell-activating factor/TNF ligand superfamily-13B. J Immunol. 2008 Aug 1;181(3):2211–2219.
  • Jackson SW, Jacobs HM, Arkatkar T, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016 May 2;213(5):733–750.
  • Seery JP. IFN-gamma transgenic mice: clues to the pathogenesis of systemic lupus erythematosus? Arthritis Res. 2000;2(6):437–440.
  • Schwarting A, Wada T, Kinoshita K, et al. IFN-γ receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Faslpr mice. J Immunol. 1998 Jul 1;161(1):494–503.
  • Sabine Z, Claudia R, Beate MK, et al. Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus | Elsevier enhanced reader [ Internet]. [cited 2020 Apr 9]. Available from: https://reader.elsevier.com/reader/sd/pii/S0022202X15349915?token=9A22AB9BA7AF0D856DD25927F27C2199A3817492201A0455DC017DBC22A3D849AAB4B64817C336E678A6F3986DDC9426
  • Zickert A, Oke V, Parodis I, et al. Interferon (IFN)-λ is a potential mediator in lupus nephritis. Lupus Sci Med. 2016 Nov 1;3(1):e000170.
  • Kalunian KC, Merrill JT, Maciuca R, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016 Jan;75(1):196–202.
  • Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016 Nov;75(11):1909–1916.
  • Tcherepanova I, Curtis M, Sale M, et al. SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013 June 1;71(Suppl 3):536–537.
  • Houssiau FA, Thanou A, Mazur M, et al. IFN-α kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis. 2020 Mar;79(3):347–355.
  • NEOVACS: Neovacs announces its clinical advisory board meeting to design the phase III Study for IFNalpha kinoide in lupus - - bloomberg [ Internet]. [cited 2020 May 30]. Available from: https://www.bloomberg.com/press-releases/2019-01-31/neovacs-neovacs-announces-its-clinical-advisory-board-meeting-to-design-the-phase-iii-study-for-ifnalpha-kinoide-in-lupus
  • Furie RA, Morand EF, Bruce IN, et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019 Dec 1;1(4):e208–19.
  • Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020 Jan 16;382(3):211–221.
  • Werth VP, Fiorentino D, Sullivan BA, et al. Brief report: pharmacodynamics, safety, and clinical efficacy of AMG 811, a human anti–interferon-γ antibody, in patients with discoid lupus erythematosus. Arthritis Rheumatol. 2017;69(5):1028–1034.
  • Martin DA, Amoura Z, Romero-Diaz J, et al. THU0389 A multiple dose study of AMG 811 (anti-IFN-gamma) in subjects with systemic lupus erythematosus and active nephritis. Ann Rheum Dis. 2015 Jun 1;74(Suppl 2):337.
  • Boedigheimer MJ, Martin DA, Amoura Z, et al. Safety, pharmacokinetics and pharmacodynamics of AMG 811, an anti-interferon-γ monoclonal antibody, in SLE subjects without or with lupus nephritis. Lupus Sci Med. 2017 Sep 1;4(1):e000226.
  • Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract. 2010;2010:240365.
  • Komatsuda A, Wakui H, Iwamoto K, et al. Up-regulated expression of toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol. 2008 Jun;152(3):482–487.
  • Lartigue A, Colliou N, Calbo S, et al. Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. J Immunol. 2009 Nov 15;183(10):6207–6216.
  • Hawn TR, Wu H, Grossman JM, et al. A stop codon polymorphism of toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci USA. 2005 Jul 26;102(30):10593–10597.
  • Patole PS, Gröne H-J, Segerer S, et al. Viral double-stranded RNA aggravates lupus nephritis through toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol. 2005 May;16(5):1326–1338.
  • Subramanian S, Tus K, Li Q-Z, et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA. 2006 Jun 27;103(26):9970–9975.
  • Pisitkun P, Deane JA, Difilippantonio MJ, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006 Jun 16;312(5780):1669–1672.
  • Kono DH, Haraldsson MK, Lawson BR, et al. Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acad Sci USA. 2009 Jul 21;106(29):12061–12066.
  • Lee PY, Kumagai Y, Li Y, et al. TLR7-dependent and FcγR-independent production of type I interferon in experimental mouse lupus. J Exp Med. 2008 Dec 22;205(13):2995–3006.
  • Savarese E, Chae O, Trowitzsch S, et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood. 2006 Apr 15;107(8):3229–3234.
  • Christensen SR, Shupe J, Nickerson K, et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006 Sep 1;25(3):417–428.
  • Desnues B, Macedo AB, Roussel-Queval A, et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci USA. 2014 Jan 28;111(4):1497–1502.
  • Tran NL, Manzin-Lorenzi C, Santiago-Raber M-L. Toll-like receptor 8 deletion accelerates autoimmunity in a mouse model of lupus through a Toll-like receptor 7-dependent mechanism. Immunology. 2015 May;145(1):60–70.
  • Sadanaga A, Nakashima H, Akahoshi M, et al. Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice. Arthritis Rheum. 2007 May;56(5):1618–1628.
  • Isnardi I, Ng Y-S, Srdanovic I, et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity. 2008 Nov 14;29(5):746–757.
  • Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005 Oct 17;202(8):1131–1139.
  • Guiducci C, Gong M, Xu Z, et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature. 2010 Jun 17;465(7300):937–941.
  • Lai C-Y, Su Y-W, Lin K-I, et al. Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. J Immunol Res [Internet]. 2017 [cited 2020 Apr 12];2017:1–15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574364/
  • Zhu F, Yu D, Kandimalla E, et al. Treatment with IMO-3100, a novel TLR7 and TLR9 dual antagonist, inhibits disease development in lupus prone NZBW/F1 mice. Santa Fe (NM); 2011.
  • Zhu F-G, Jiang W, Dong Y, et al. IMO-8400, a novel TLR7, TLR8 and TLR9 antagonist, inhibits disease development in lupus-prone NZBW/F1 mice (119.12). J Immunol. 2012 May 1;188(1 Supplement):119.12.
  • Römmler F, Hammel M, Waldhuber A, et al. Guanine-Modified inhibitory oligonucleotides efficiently impair TLR7- and TLR9-mediated immune responses of human immune cells. PloS One. 2015 Feb 19;10:e0116703.
  • Lipford G, Forsbach A, Zepp C, et al. Presentation: selective toll-like receptor 7/8/9 antagonists for the oral treatment of autoimmune diseases (2007) [ Internet]. [cited 2020 Apr 12]. Available from: https://acr.confex.com/acr/2007/webprogram/Paper8044.html
  • Wu Y, He S, Bai B, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell Mol Immunol. 2016;13(3):379–390.
  • Idera pharmaceuticals provides development update on IMO-9200, an Antagonist of toll-like receptors | Idera Pharmaceuticals, Inc. [ Internet]. [cited 2020 May 31]. Available from: http://ir.iderapharma.com/news-releases/news-release-details/idera-pharmaceuticals-provides-development-update-imo-9200
  • Yan S, Yim LY, Lu L, et al. MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune Netw. 2014 Jun;14(3):138–148.
  • Dai Y, Huang Y-S, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007;16(12):939–946.
  • Arenas-Padilla M, Mata-Haro V. Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases. Cent Eur J Immunol. 2018;43(4):482–489. Warsaw.
  • ZAN H, TAT C, CASALI P. microRNAs in lupus. Autoimmunity. 2014 Jun;47(4):272–285.
  • Furie R, Rovin BH, Houssiau F, et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med. 2020 Sep 17;383(12):1117–1128.
  • Maria NI, Davidson A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat Rev Rheumatol. 2020 May;16(5):255–267.
  • Teruel M, Chamberlain C, Alarcón-Riquelme ME. Omics studies: their use in diagnosis and reclassification of SLE and other systemic autoimmune diseases. Rheumatology. 2016 Oct 19:kew339. DOI:10.1093/rheumatology/kew339

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.