3,768
Views
2
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic targets for sepsis

, , , &
Pages 175-189 | Received 23 Oct 2020, Accepted 25 Feb 2021, Published online: 12 Apr 2021

References

  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810.
  • Kissoon N, Limmathurotsakul D, et al. The global burden of sepsis: barriers and potential solutions. Crit Care. 2018;22:232.
  • Sepsis: data & reports. Centers for Disease Control and Prevention 2016 [cited 2019 11/26/2019].
  • Paoli CJ, Reynolds MA, Sinha M, et al. Epidemiology and costs of sepsis in the United States—an analysis based on timing of diagnosis and severity level. Crit Care Med. 2018;46(12):1889–1897.
  • Dellinger RP,Levy MM, Rhodes A. et al., for Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock:2012. Crit Care Med. 2013;41(2):580-637.
  • Yealy DM KJ, Huang DT, ProCESS Investigators, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014;370(18):1683–1693
  • Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–1506.
  • Mouncey PR, Osborn TM, Power S, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–1311.
  • Howell MD, Davis AM. Management of sepsis and septic shock. JAMA. 2017;317(8):847–848.
  • Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic Shock: 2016. Crit Care Med. 2017;45(3):486–552.
  • Zhang L, Zhu G, Han L, et al. Early goal-directed therapy in the management of severe sepsis or septic shock in adults: a meta-analysis of randomized controlled trials. BMC Med. 2015;13:71.
  • Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003;348(8):727–734.
  • Sprung CL, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–124.
  • Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378:797–808.
  • Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378:809–818.
  • Lamontagne F, Rochwerg B, Lytvyn L, et al. Corticosteroid therapy for sepsis: a clinical practice guideline. In: The BMJ. 2018;362:k3284.
  • Fang F, Zhang Y, Tang J, et al. Association of corticosteroid treatment with outcomes in adult patients with sepsis: a systematic review and meta-analysis. JAMA Intern Med. 2019;179(2):213–223.
  • Rochwerg B, Oczkowski SJ, Siemieniuk RAC, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–1420.
  • Fisher BJ, Kraskauskas D, Martin EJ, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012;303(1):L20–32.
  • Fujii T, Luethi N, Young PJ, et al. Effect of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive and Free of Vasopressor Support Among Patients With Septic Shock: the VITAMINS Randomized Clinical Trial. Jama. 2020;323(5):423–431.
  • Heffernan DS. Influenza and the Surgeon. Surg Infect (Larchmt). 2019;20(2):119–128.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med; 2020;383(19):1813-1826.
  • Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369(6506):1010–1014.
  • Surbatovic M, Popovic N, Vojvodic D, et al. Cytokine profile in severe gram-positive and gram-negative abdominal sepsis. In: Nature. Sci Rep. 2015;5:11355.
  • Alexandraki I, Palacio C. Gram-negative versus Gram-positive bacteremia: what is more alarmin(g)? Crit Care. 2010;14(3):161.
  • Fong Y, Tracey KJ, Moldawer LL, et al. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1-beta and interleukin 6 appearance during lethal bacteremia. J Exp Med. 1989;170:1627–1633.
  • Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330:662–664.
  • Ziegler EJ, Fisher Jr. CJ, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with ha-1a human monoclonal antibody against endotoxin. N Engl J Med. 1991;324(7):429–436.
  • McCloskey RV, Straube RC, Sanders C, et al. Treatment of septic shock with human monoclonal antibody HA-1A. Ann Intern Med. 1994;121(1):1–5.
  • Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. JAMA. 1995;273:934–941.
  • Fisher CJ Jr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: fcfusion protein. N Engl J Med. 1996;334(26):1697–1702.
  • Bernard GR, Vincent J-L, Laterre P-F, et al. Efficacy and safety of recombinant human activated protein c for severe sepsis. N Engl J Med. 2001;344:699–709.
  • Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin Alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–2064.
  • Saito H, Maruyama I, Shimazaki S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5(1):31–41.
  • Yamakawa K, Fujimi S, Mohri T, et al. Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study. Crit Care. 2011;15(3):R123.
  • Kato T, Matsuura K. Recombinant human soluble thrombomodulin improves mortality in patients with sepsis especially for severe coagulopathy: a retrospective study. Thromb J. 2018;16: 19-19.
  • Vincent J-L, Francois B, Zabolotskikh I, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA. 2019;321(20):1993–2002.
  • Yoshihiro S, Sakuraya M, Hayakawa M, et al. Recombinant human-soluble thrombomodulin contributes to reduced mortality in sepsis patients with severe respiratory failure: a retrospective observational study using a multicenter dataset. Shock. 2019;51(2):174–179.
  • Seeley EJ, Bernard GR. Therapeutic targets in sepsis: past, present and future. Clin Chest Med. 2016;37:181–189.
  • Fink MP. Animal models of sepsis. Virulence. 2014;5(1):143–153.
  • Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther. 2014;8:1911–1922.
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–1736.
  • Decker WK, da Silva RF, Sanabria MH, et al. Cancer Immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829.
  • Dunsmore S, Notice of Information on NIGMS priorities for sepsis research, in NIGMS feedback loop blog – National Institute of General Medical Sciences. 2019, NIH.
  • Biron BM, Ayala A, Lomas-Neira JL. Biomarkers for sepsis: what is and what might be? Biomark Insights. 2015;10:7–17.
  • Efron PA, Mohr AM, Moore FA, et al. The future of murine sepsis and trauma research models. J Leukoc Biol. 2015;98(6):945–952.
  • Remick DG, Ayala A, Chaudry I, et al. Premise for standardized sepsis models. Shock. 2019;51(1):4–9.
  • Osuchowski M, Ayala A, Bahrami S, et al. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): an International Expert Consensus Intiaitive for Improvement of Animal Modeling in Sepsis. Shock. 2018;50(4):377–380.
  • Chun TT, Potz BA, Young WA, et al. Overview of the Molecular Pathways and Mediators of Sepsis, in Sepsis: definitions, Pathophysiology and the Challenge of Bedside Management. Ward NS, Levy MM. Editors. Cham (Switzerland):Springer International; 2017. p. 47–69.
  • Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–268.
  • Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24(7):1125–1128.
  • Huang X, Chen Y, Chung CS, et al. Identification of B7-H1 as a novel mediator of the innate immune/proinflammatory response as well as a possible myeloid cell prognostic biomarker in sepsis. J Immunol. 2014;192(3):1091–1099.
  • Huang X, Venet F, Wang YL, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Nat Acad Sci. [2009];106(15):6303–6308.
  • Guignant C, Lepape A, Huang X, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(R99):1–11.
  • Hotchkiss RS, Colston E, Yende S, et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care Med. 2019;47(5):632–642.
  • Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. Vivo. 2013;27(6):669–684.
  • Berghe TV, Demon D, Bogaert P, et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med. 2014;189(3):282–291.
  • Hutchins NA, Unsinger J, Hotchkiss RS, et al. The new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol Med. 2014;20(4):224–233.
  • Grimaldi D, Pradier O, Hotchkiss RS, et al. Nivolumab plus interferon-γ in the treatment of intractable mucormycosis. Lancet Infect Dis. 2017;17(1):18.
  • Huber-Lang M, Barratt-Due A, Pischke SE, et al. Double blockade of cd14 and complement c5 abolishes the cytokine storm and improves morbidity and survival in polymicrobial sepsis in mice. J Immunol. 2014;192:5324–5331.
  • Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–338.
  • Dahmer MK, Quasney MW, Sapru A, et al. Interleukin-1 receptor antagonist is associated with pediatric acute respiratory distress syndrome and worse outcomes in children with acute respiratory failure. Pediatr Crit Care Med. 2018;19(10):930–938.
  • Ottinger ME, Monaghan SF, Gravenstein S, et al. The geriatric cytokine response to trauma: time to consider a new threshold. Surg Infect (Larchmt). 2014;15(6):800–805.
  • Tsirigotis P, Chondropoulos S, Gkirkas K, et al. Balanced control of both hyper and hypo-inflammatory phases as a new treatment paradigm in sepsis. J Thorac Dis. 2016;8(5):E312–6.
  • Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock. 2016;45(5):475–482.
  • Heffernan IM, McGeary JE, Chung CS, et al. Unmasking unique immune altering aspects of the microbiome as a tool to correct sepsis-induced immune dysfunction. Surg Infect (Larchmt). 2021;22:[epub ahead of press].
  • Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care. 2017;23(2):143–148.
  • Agudelo-Ochoa GM, Valdés-Duque BE, Giraldo-Giraldo NA, et al. Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis. Gut Microbes. 2020;12(1):1707610.
  • Tamburini FB, Andermann TM, Tkachenko E, et al. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018;24(12):1809–1814.
  • Wilmore JR, Gaudette BT, Gomez Atria D, et al. Commensal microbes induce serum Iga responses that protect against polymicrobial sepsis. Cell Host Microbe. 2018;23(3):302–311.e3.
  • Fay KT, Klingensmith NJ, Chen CW, et al. The gut microbiome alters immunophenotype and survival from sepsis. Faseb J. 2019;33(10):11258–11269.
  • Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512–516.
  • Huggins MA, Sjaastad FV, Pierson M, et al. Microbial exposure enhances immunity to pathogens recognized by TLR2 but increases susceptibility to cytokine storm through tlr4 sensitization. Cell Rep. 2019;28(7):1729–1743.e5.
  • Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015;52(12):7577–7587.
  • Chen L, Li H, Li J, et al. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis. Int J Mol Med. 2019;43(3):1139–1148.
  • Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN, et al. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 2019;19(1):131.
  • Jacobs SE, Tobin JM, Opie GF, et al. Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics. 2013;132(6):1055–1062.
  • Cui X, Shi Y, Gao S, et al. Effects of Lactobacillus reuteri DSM 17938 in preterm infants: a double-blinded randomized controlled study. Ital J Pediatr. 2019;45(1):140.
  • Stadlbauer V, et al. Dysbiosis in early sepsis can be modulated by a multispecies probiotic: a randomised controlled pilot trial. Benef Microbes. 2019;10(3):265–278.
  • Shimizu K, Yamada T, Ogura H, et al. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial. Crit Care. 2018;22(1):239.
  • Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: a randomized trial. Ann Intern Med. 2016;165(9):609–616.
  • Ávila PRM, Michels M, Vuolo F, et al. Protective effects of fecal microbiota transplantation in sepsis are independent of the modulation of the intestinal flora. Nutrition. 2020;73:110727.
  • Kim SM, DeFazio JR, Hyoju SK, et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat Commun. 2020;11(1):2354.
  • Li S, Lv J, Li J, et al. Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve. Neurosci Lett. 2018;662:98–104.
  • Wei Y, Yang J, Wang J, et al. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit Care. 2016;20(1):332.
  • Stapleton RD, Wang BM, Hudson LD, et al. Causes and timing of death in patients with ARDS. Chest. 2005;128(2):525–532.
  • Schmitt FCF, Lipinski A, Hofer S, et al. Pulmonary microbiome patterns correlate with the course of the disease in patients with sepsis-induced ARDS following major abdominal surgery. J Hosp Infect. 2020;105:438-446.
  • Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1(10):16113.
  • D’Mello A, Riegler AN, Martínez E, et al. An in vivo atlas of host-pathogen transcriptomes during Streptococcus pneumoniae colonization and disease. Proc Natl Acad Sci U S A. 2020;117(52):33507–33518.
  • Bomsztyk K, Mar D, An D, et al. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care. 2015;19(1):225.
  • Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4(4):259–271.
  • Rump K, Unterberg M, Dahlke A, et al. DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci Rep. 2019;9(1):18511.
  • Weiterer S, Uhle F, Lichtenstern C, et al. Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS One. 2015;10(3):e0121748.
  • Liu TF, Yoza BK, El Gazzar M, et al. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem. 2011;286(11):9856–9864.
  • Wang X, Buechler NL, Martin A, et al. Sirtuin-2 regulates sepsis inflammation in ob/ob Mice. PLoS One. 2016;11(8):e0160431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.